

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2023

 C	Centr	e Nu	mber
0	al: al a 4	- N.	mber
Carr	uluat	e Nu	IIIDEI

Chemistry

Assessment Unit AS 1

assessing

Basic concepts in Physical
and Inorganic Chemistry

SCH14

[SCH14]

TUESDAY 16 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Answer all fifteen questions in Sections A and B.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen or a pencil.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Quality of written communication will be assessed in Question 13(a).

The figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.

A Periodic Table of Elements, containing some data, is included with this question paper.

Section A

For each of the following questions, only **one** of the lettered responses (A–D) is correct.

Select the correct response in each question and write the appropriate letter in the space provided.

- 1 Which one of the following bond angles is **not** present in a PF₅ molecule?
 - A 90°
 - B 109.5°
 - C 120°
 - D 180°

Answer [1]

93

PE

96)

93

93

)

93

)

93

93

Pa g Learning

93

- **2** Which one of the following gives the correct formulae for potassium chromate(VI) and potassium dichromate(VI)?
 - A KCrO₄ KCr₂O₇
 - B KCrO₄ K₂Cr₂O₇
 - C K₂CrO₄ KCr₂O₇
 - $\mathsf{D} \quad \mathsf{K}_2\mathsf{CrO}_4 \qquad \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7$

Answer _____ [1]

- 3 7.10 g of anhydrous sodium sulfate were dissolved in water and made up to 250 cm³ in a volumetric flask. What is the concentration of sodium ions in this solution?
 - A $0.05\,\mathrm{mol}\;\mathrm{dm}^{-3}$
 - B $0.10 \, \text{mol dm}^{-3}$
 - C $0.20 \,\mathrm{mol}\,\mathrm{dm}^{-3}$
 - D $0.40\,\mathrm{mol}\;\mathrm{dm}^{-3}$

Answer _____ [1]

- 4 Which one of the following bonds is the least polar?
 - A O—F

Learning Bewarding

Rewarding L Rewarding L Rewarding L Rewarding L

Œ

Hewarding L

GE Bewarding L

Learning Rewarding L

9(3)

- B N—F
- C CI-F
- D I—F

Answer _____ [1]

5 Which one of the following is **not** a disproportionation reaction?

$$A Br_2 + H_2O \rightarrow HBr + HBrO$$

$$\mathsf{B} \quad \mathsf{Cl}_2 \ + \ \mathsf{2NaBr} \quad \rightarrow \ \mathsf{2NaCl} \ + \ \mathsf{Br}_2$$

$$\text{C} \quad \text{Cl}_2 \quad + \quad 2 \text{NaOH} \quad \rightarrow \quad \text{NaCl} \quad + \quad \text{NaClO} \quad + \quad \text{H}_2 \text{O}$$

D
$$3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$$

Answer _____ [1]

[Turn over

6 Which one of the following is the number of atoms present in 3.20 g of sulfur dioxide?

A
$$3.01 \times 10^{22}$$

B
$$6.02 \times 10^{22}$$

C
$$9.03 \times 10^{22}$$

D
$$6.02 \times 10^{23}$$

Answer _____ [1]

)

PE

)

93

93

E

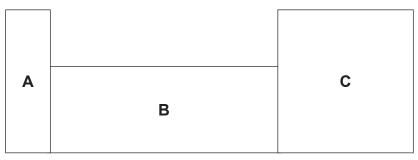
93

g Learning

7 Which one of the following shows the **incorrect** colour for the substance given?

	Substance	Colour
А	I ₂ (aq)	brown
В	l ₂ (g)	red-brown
С	I ₂ (hexane)	purple
D	l ₂ (s)	grey-black

Answer [1]


8 Hydrated nickel(II) nitrate is a green crystalline solid which contains approximately 37% water by mass. Which one of the following is the correct formula of hydrated nickel(II) nitrate?

- A NiNO₃.4H₂O
- B NiNO₃.6H₂O
- C $Ni(NO_3)_2.4H_2O$
- D $Ni(NO_3)_2.6H_2O$

Answer _____ [1]

9 Which one of the following letters represents the d-block of the Periodic Table?

D

Answer _____ [1]

10 Which one of the following is correct for a p subshell?

	Number of orbitals	Maximum number of electrons in subshell
А	1	2
В	3	6
С	5	10
D	7	14

Answer _____ [1]

[Turn over

Section B

Answer all five questions in this section

- **11** Magnesium has three naturally occurring isotopes: ²⁴Mg, ²⁵Mg and ²⁶Mg.
 - (a) (i) State the number of protons, neutrons and electrons in an atom of the ²⁶Mg isotope.

protons _____

neutrons _____

electrons _____ [1]

(ii) Write the electronic configuration of an atom of the $^{26}\mathrm{Mg}$ isotope.

[1]

)

93

(b) The percentage abundance and relative isotopic mass of each isotope are given in the table below.

Isotope	Abundance /%	Relative isotopic mass
²⁴ Mg	79.0	23.985
²⁵ Mg	10.0	24.986
²⁶ Mg	11.0	25.983

(i)	Define	relative	isotopic	mass
-----	--------	----------	----------	------

_____[

	(ii)	Calculate the relative atomic mass of magnesium to 1 decimal place.	
		Answer	_ [2]
		Autowor	_ [~]
(c)		e successive ionisation energies of magnesium give evidence for the stence of shells.	
	(i)	Define third ionisation energy.	
			_ [2]
	(ii)	Write an equation, including state symbols, which represents the third	
		ionisation energy of magnesium.	_ [1]
			- ניו
13618.06 R		[Tur	n over

Learning

Rewarding L

Rewarding

Learning

Rewarding L

Learning

Rewarding L

DED Learning

Rewarding L

Rewarding L

Learning L

DED I Learning

Learning

Rewarding L

Rewarding L.

Learning

Rewarding L

Rewarding L

Rewarding L.

Learning

Rewarding L.

E

(iii) Label the subshells in the diagram and, using electrons in boxes notation give the electronic configuration of the ²⁶ Mg ²⁺ ion.	n,
	[2]
(iv) The second ionisation energy of magnesium is 1500 kJ mol ⁻¹ and the third ionisation energy of magnesium is 7700 kJ mol ⁻¹ . State three reasons why the third ionisation energy of magnesium is much greater than the second.	
	_ [3]
13618.06 R	

96 Hewarding Department g Learning g Learning g Learning Rewarding DEJ g Learning G. Rewarding g Learning G S Rewardin PED g Learning G. DED IN LEASE OF THE PARTY OF TH Remode

p learning

Reveating

Partial R

Revarding Powering Revarding Revarding Powering Revarding Re

Rewarding g Learning

Rewarding

g Learning

Rewarding

g Learning

۱۵۱	Magnasium	roooto with	ablarina te	form	ma a am a air ina	مامينام	i	rodov.	roostion
(u)	Magnesium	Teacis Willi	CHIOTHE II	ווווטו כ	magnesium	CHIOHUE	III a	TEUUX	Teaction

(i) Write half-equations for the oxidation and reduction reactions which occur.

oxidation half-equation ______

reduction half-equation _____ [2

(ii) Using a dot and cross diagram show how magnesium chloride is formed from magnesium and chlorine atoms.

[2]

[Turn over

13618.06**R**

Learning

Learning

Rewarding L

Hewarding L

GE Bewarding L

Learning

Rewarding L.

(a)	Giv	lium iodide. Concentrated sulfuric acid is a source of sulfate ions. e the systematic name of the sulfate ion.	
(a)			_
(b)		e reaction between concentrated sulfuric acid and solid sodium chloride is edox reaction. One of the products is hydrogen chloride.	s r
	(i)	Write an equation for this reaction.	
			_
	(ii)	Describe a test which would indicate the presence of hydrogen chloride.	
			_
(c)	bro	ring the reaction between concentrated sulfuric acid and solid sodium mide, hydrogen bromide is formed and oxidised by the acid. Write an lation for oxidation of hydrogen bromide by concentrated sulfuric acid.	
(d)	lodi	ide ions are stronger reducing agents than bromide ions.	
(4)	(i)	Define reducing agent.	
	,		_
	(ii)	Suggest why iodide ions are stronger reducing agents than bromide ion	າຣ

g Learning

Rewarding

g Learning

g Learning

g Learning

Revarding

y Learning

Reveateding Planning Planning

Reveating

Poly

Powering

Rewarding g Learning

Rewarding g Learning

Rewarding

Book g Learning

Rewarding

g Learning

DED g Learning

(e)		en concentrated sulfuric acid is added to solid sodium iodide, iodine and e sulfur containing products are formed.	
	(i)	Determine the oxidation state of sulfur in each of the following sulfur containing products.	
		SO ₂	
		S	[2]
	(ii)	What observation would suggest the formation of H ₂ S in this reaction?	F41
	(iii)	What observation would suggest the formation of sulfur in this reaction?	[1]
	(,		[1]
	(iv)	Complete the half-equation for the formation of H ₂ S.	
		SO_4^{2-} + H^+ + \rightarrow H_2S + H_2O	[2]
	(v)	Write a half-equation for the formation of iodine.	F.4.1
	(vi)	Combine the half-equations in (e)(iv) and (e)(v) to give a balanced redox equation.	[1]
			[1]

Rewarding L.

Learning
Rewarding L

DED Learning

DED Learning

Learning

Rewarding L

Rewarding L

E Rewarding L

DED Learning

GE Bewarding L

Rewarding L

Learning
Rewarding L

Rewarding L.

Learning

Rewarding L.

PE)

13618.06**R**

[Turn over

13 Ele	ments and compounds show different types of bonding and structure.
(a)	Describe the bonding and structure of carbon (graphite) and oxygen and explain the difference in the melting points of the two substances.
	In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
	[6]
3618.06 R	

pl. corning

Powering

Rewarding g Learning

Rewarding

Description

g Learning

g Learning Rewarding g Learning Rewarding Rewarding g Learning Rewarding DED g Learning @ Sewardin Rewardin g Learnina G S Rewardin, Pewarding g Learning a Learning G. Hewarding DED g Learning Rewarding DED g Learning Œ. Rewarding g Learning <u>G</u> Rewarding g Learning

Rewarding

G. Rewarding

G. Rewarding

g. Learning

G:

(b)		bon (graphite) reacts with oxygen and with ozone (O ₃). Both reactions n carbon dioxide.	
	(i)	Write an equation for the reaction of carbon (graphite) with ozone.	_ [1]
	(ii)	Describe a chemical test for carbon dioxide.	
			_ [1]
	(iii)	Explain why carbon dioxide is non-polar.	
			_ [2]
(c)	Pot	bon dioxide reacts with potassium hydroxide to form potassium carbonal assium carbonate is an ionic compound which melts at 891°C and is veruble in water.	
	(i)	State how you could show experimentally that potassium carbonate is a ionic compound based on its physical properties.	n
			[1]
	(ii)	Write an equation for the formation of potassium carbonate from carbon dioxide and potassium hydroxide.	
			_ [1]
13618.06 R		[Tui	n ov

DED Learning

Rewarding L

Rewarding
Learning

DED Learning

DED Learning

Learning

DED Learning

Learning

Rewarding L

Rewarding L

DED Learning

DED Learning

GE Rewarding L

Rewarding L.

Rewarding L

Rewarding L

Rewarding L.

Learning

Rewarding L.

E

g Learning

Rewarding
g Learning
Rewarding

Revarding
g Learning

Rewarding g Learning

Rewarding

g Learning

Paymenting

g Learning

Revarding
g Learning

Rewarding g Learning

Rewarding

GLEARING

GLEARING

GLEARING

Pleasarding

g Learning

G G G

Revarding

G G G

Revarding

G G G

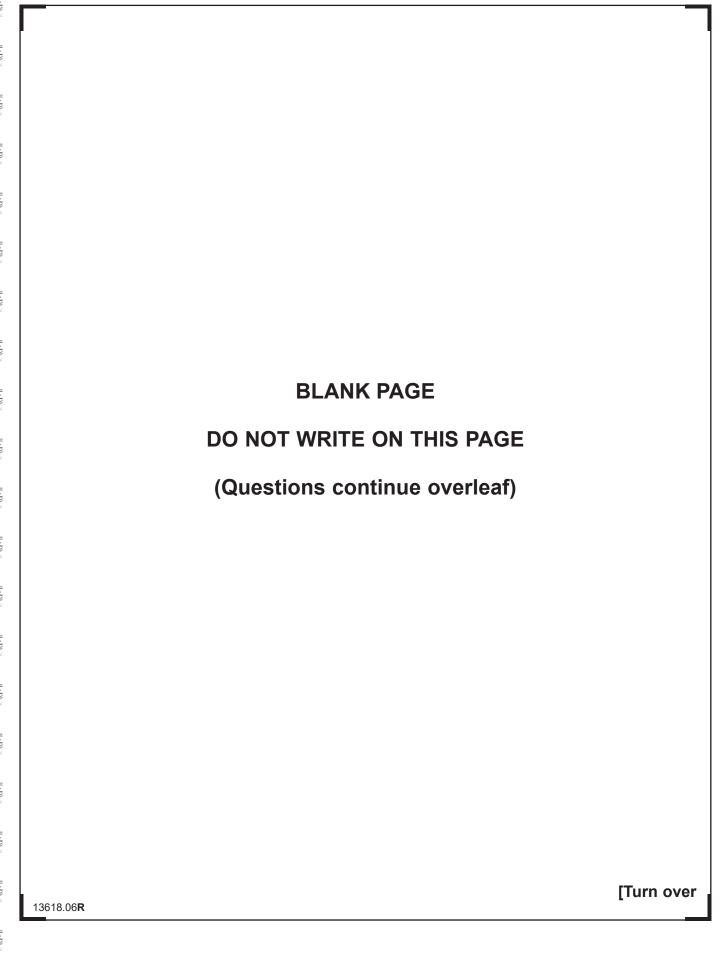
Revarding

Rewarding g Learning

Œ.

Rewarding Descripting

Rewardin DED g Learnier


g Learning

Rewarding

g Learning

earning.

14	14 Ethane (CH ₃ CH ₃) and methylamine (CH ₃ NH ₂) have similar relative molecular masses.			
	(a) (Draw a dot and cross diagram to show the bonding in a molecule of methylamine.	
				[1]
	((ii)	State the value for the H—C—H bond angles in a methylamine molecule.	[1]
	(Suggest and explain the shape around the nitrogen atom in a methylamine molecule.	
				[3]
13618.06	SR .			

g Learning Hewarding Department g Learning Hewardin, g Learning g Learning Rewarding DED g Learning G. Rewarding g Learning G S Rewardin PED g Learning G. DED IN LEASE OF THE PARTY OF TH Remode

g Learning G. Rewarding g Learning Rewarding Rewarding g Learning G. Rewarding DED g Learning @ Sewardin Hewardin, Rewardin, Rewarding Departure g Learning) G. Hewarding DED g Learning Rewarding DED g Learning Œ. Rewarding DED g Learning G:

Rewarding g Learning

Rewarding

g Learning

Rewarding

g Learning

(b)	(i)	Define electronegativity .	
			[1]
	(ii)	Show the polarity of the N—H bond below, using partial charges.	
		N—H	
			[1]
	(iii)	Predict which of the compounds, ethane or methylamine, has the higher boiling point. Explain the difference in boiling points between these two compounds.	
			[3]
		FT	IKD 01/0-
13618.06 R		Įiu	rn over

DED Learning

Rewarding L

Rewarding
Learning

DED Learning

DED Learning

Learning
Rewarding L

Rewarding L

Rewarding L

Rewarding L

Learning

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Learning

Rewarding L.

Learning

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Learning

Rewarding L

Learning

Rewarding L.

Rewarding L.

Learning

Rewarding L.

E

		hylamine is a weak base and a solution of methylamine reacts with strong s to form the methylammonium ion ($CH_3NH_3^+$).	9
	(Write an equation for the reaction of methylamine with sulfuric acid to for methylammonium sulfate.	m . [2]
	(Explain, with reference to the type of bond formed, how a methylamine molecule forms a methylammonium ion.	. [4]
			[2]
	(Draw a diagram to show two hydrogen bonds which can form between o methylamine molecule and two water molecules. Show all lone pairs.	ne
			[2]
13618.06 F	R		_

g Learning
Rewardin,
g Learning

Rewarding

g Learning

Rewarding

g Learning

Rewarding g Learning

Rewarding

Rewarding

Rewarding g Learning

Rewarding

1 Carring

1 Carring

1 Carring

1 Carring

1 Carring

g Learning

g Learning

Rewarding

Rewarding

g Learning

Rewarding g Learning

Revarding

J. Learning

personal programme program

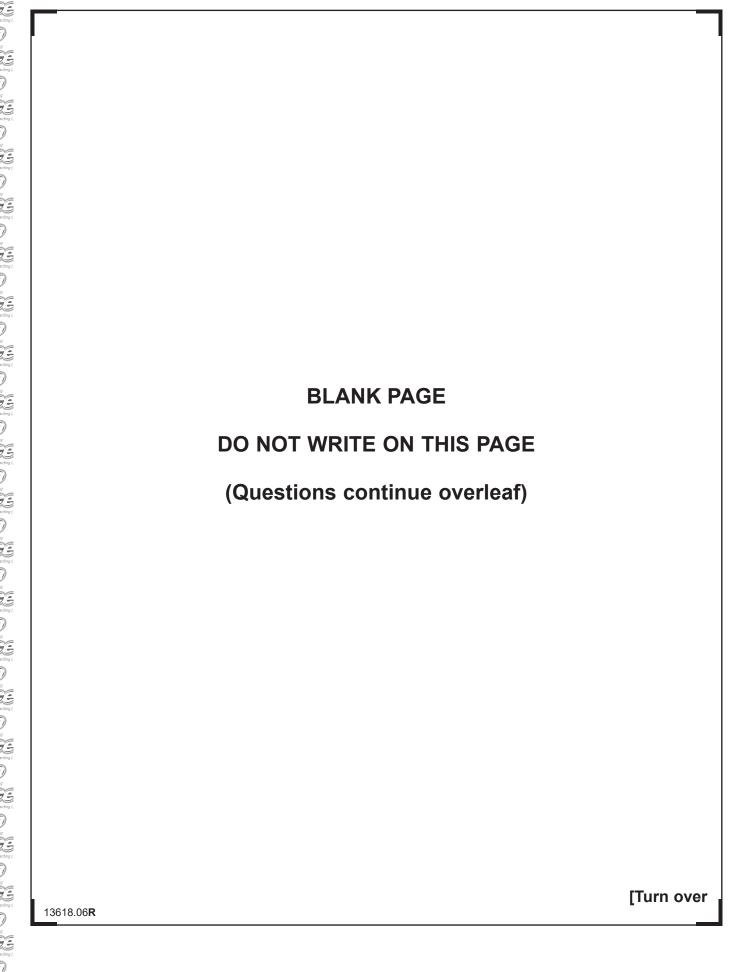
Rewarding

g Learning

Rewarding

Rewarding Description

Rewardin DED g Learnier


g Learning

Rewarding

g Learning

Learning

15 Sodium hydroxide solution is used in precipitation reactions and in titrations.

(a) When a sample of 175 cm³ of a 0.100 mol dm⁻³ solution of sodium hydroxide is added to 125 cm³ of a 0.100 mol dm⁻³ solution of magnesium chloride, magnesium hydroxide forms as a white precipitate.

$$\mathrm{MgCl}_2 + \mathrm{2NaOH} \rightarrow \mathrm{Mg(OH)}_2 + \mathrm{2NaCl}$$

(i) Write an ionic equation, including state symbols, for this reaction.

_____ [2]

(ii) Calculate the maximum mass of magnesium hydroxide which could form. Give your answer to 3 significant figures.

Answer _____ [4]

93

PE

96)

93

93

93

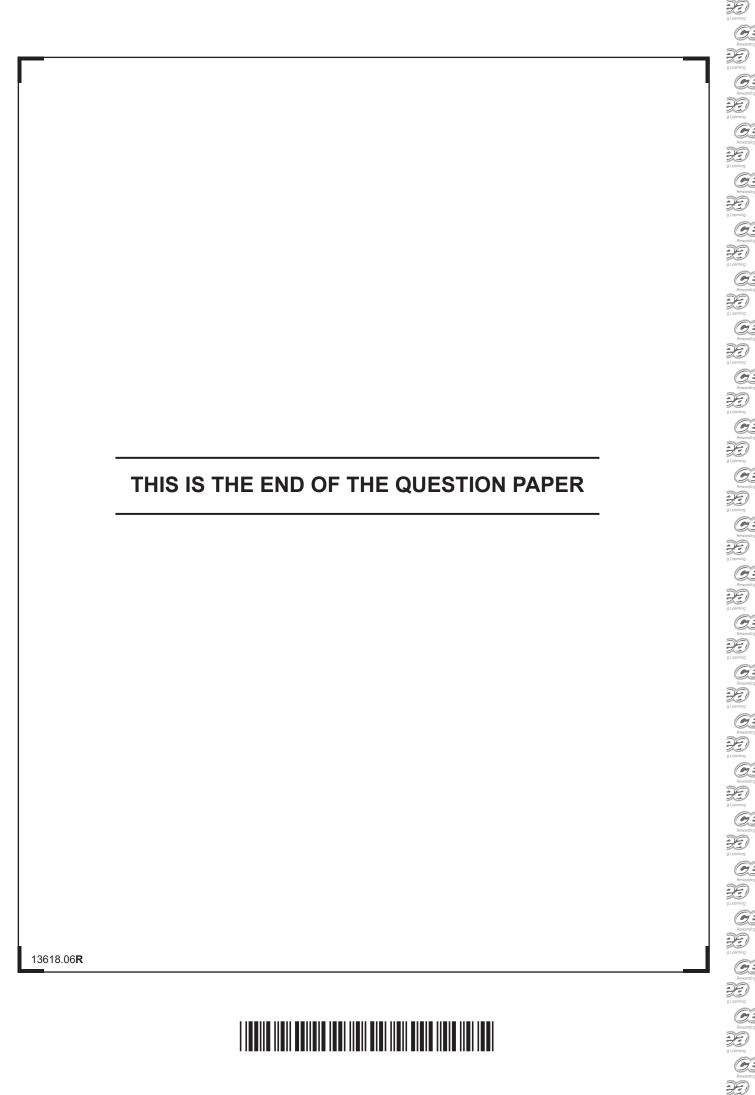
g Learning

(b) In a titration, 25.0 cm³ of sulfuric acid were titrated using 0.18 mol dm⁻³ sodium hydroxide solution. The table below shows the titration values obtained. The mean titre was calculated to be 21.2 cm³.

	Rough	Accurate 1	Accurate 2
Initial burette reading /cm³	1.5		24.9
Final burette reading /cm ³	23.4	44.5	
Titre /cm ³			21.3

i)	Complete the table.	[3]

(ii)	Calculate the concentration of the sulfuric acid in g dm ⁻³ . Give your answer
	to an appropriate number of significant figures.


Answer	g dm ⁻³ [4]
(iii) Name a suitable indicator for this titration and state the colour ch	nange

observed at the end point.	
Indicator:	


13618.06**R**

Rewarding L.

earning G

DO NOT WRITE ON THIS PAGE

For Examiner's use only		
Question Number		
Section A		
1–10		
Secti	on B	
11		
12		
13		
14		
15		

g Learning

Rewardin

g Learning

Hewardin Park

)

20

20

93

PE

)

)

9 Learning

93

newarding Description

DE P

P

)

g Learning

Hewarding DE g Learning

De learning

Examiner Number

Total	
Marks	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

SCH14/7 276813

