Surna	ame
-------	-----

Centre Number

First name(s)

GCE AS/A LEVEL

2400U10-1

MONDAY, 15 MAY 2023 - MORNING

BIOLOGY – AS unit 1 Basic Biochemistry and Cell Organisation

1 hour 30 minutes

For Examiner's use only					
Question	Mark Awarded				
1.	12				
2.	13				
3.	10				
4.	11				
5.	13				
6.	12				
7.	9				
Total	80				

ADDITIONAL MATERIALS

A calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

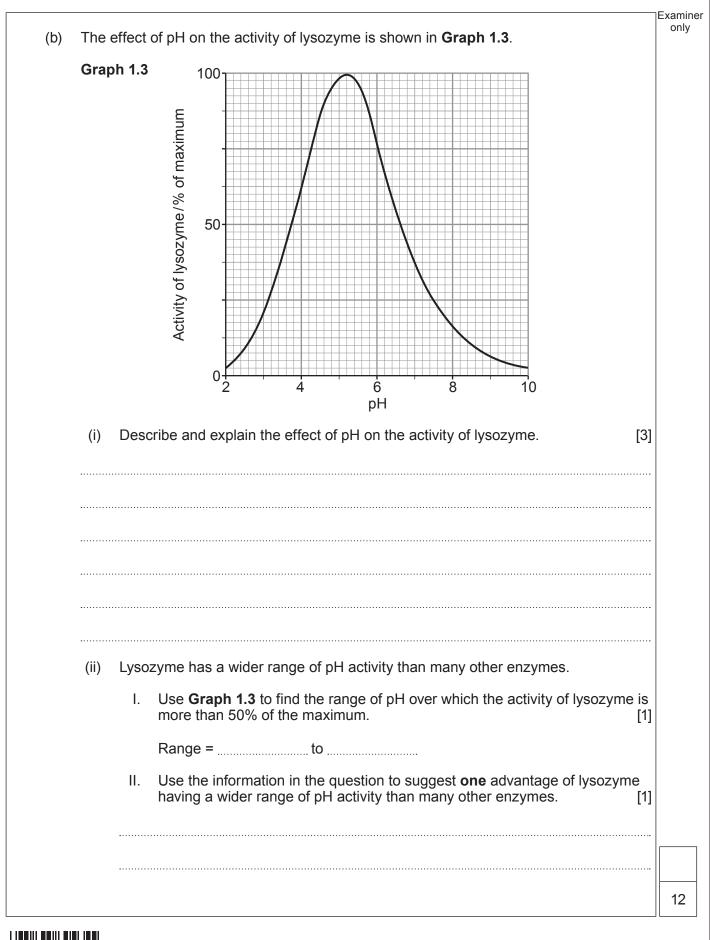
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. The assessment of the quality of extended response (QER) will take place in question **7**.

The quality of written communication will affect the awarding of marks.

		Answer all questions.	Exa
Lysoz cell w	zyme is an enzyme /alls. Lysozyme, sl	e found in saliva and tears. It hydrolyses the carbohydrates in bacterial nown in Image 1.1 , is a single polypeptide containing 129 amino acids.	
Imag	e 1.1 Ribbon diaç	gram of lysozyme	
		active site	
(a)	Lysozyme shows	primary, secondary and tertiary structure.	
	(i) State what	is meant by primary structure. [1]
			2]
	Level of structure	Explanation	
	Secondary		
	Tertiary		
	cell w	 (a) Lysozyme, sł (i) Lysozyme shows (ii) State what (iii) Use the infection how Image 1.1. Table 1.2 Level of structure 	cell walls. Lysozyme, shown in Image 1.1, is a single polypeptide containing 129 amino acids. Image 1.1 Ribbon diagram of lysozyme active site active site (a) Lysozyme shows primary, secondary and tertiary structure. (i) State what is meant by primary structure. (ii) Use the information given and your own knowledge to complete Table 1.2 to explain how the secondary and tertiary structures of lysozyme are illustrated in Image 1.1. [2] Table 1.2 Level of structure Explanation

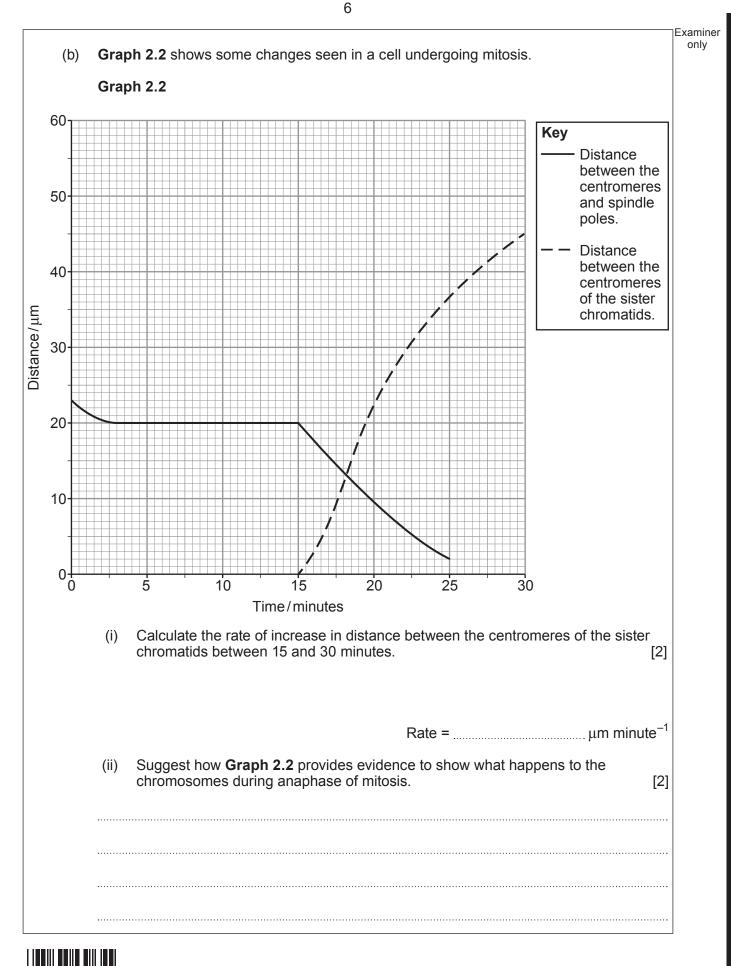


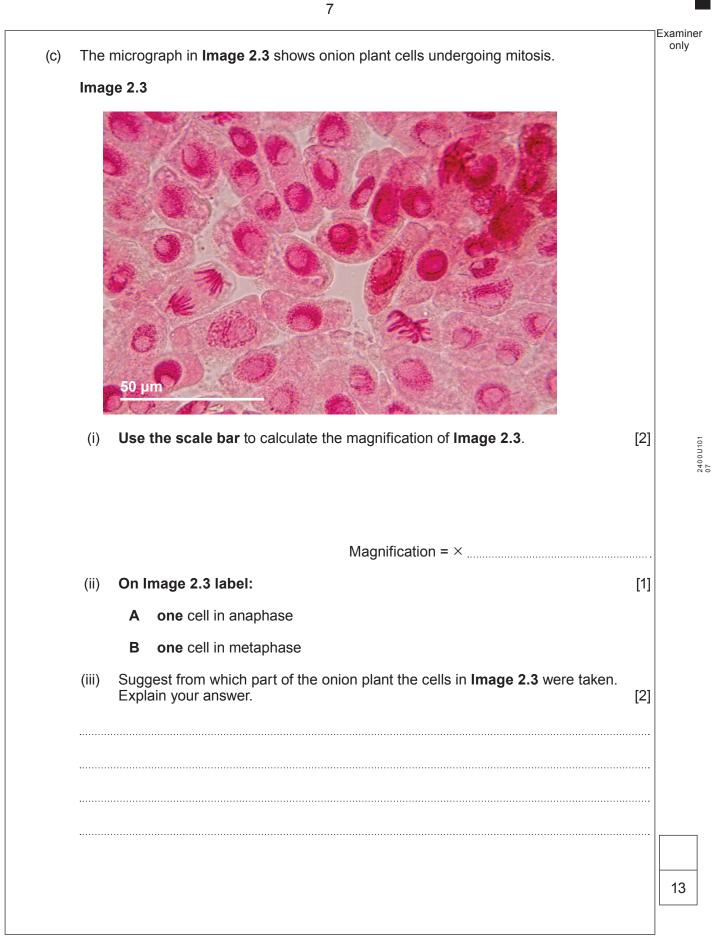
Examiner The cytoplasm of bacterial cells is **hypertonic** to saliva and tears. Suggest how the destruction of the cell wall of bacteria by lysozyme results in the death of the (iii) [3] bacteria. Lysozyme works by an induced fit mechanism. Explain what this means. [1] (iv)

2400U101 03

only

Examiner only Image 2.1 shows metaphase during cell division of three cells of the mosquito, Culex pipiens. 2. The mosquito has a diploid number of 2n = 6. Image 2.1 С Α В X))(K X XK)) Ж Insert the correct letter (A, B or C) into the table to indicate which stage of cell division is represented by each cell. (a) (i) [2] Г Т


5


Metaphase of:	Letter
Mitosis	
Meiosis I	
Meiosis II	

(ii) State **two** differences in the daughter cells of *Culex pipiens* following mitosis and meiosis. [2]

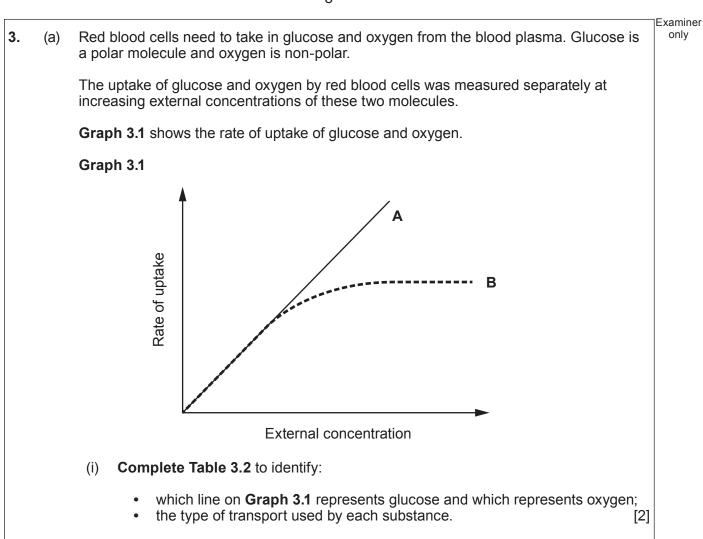
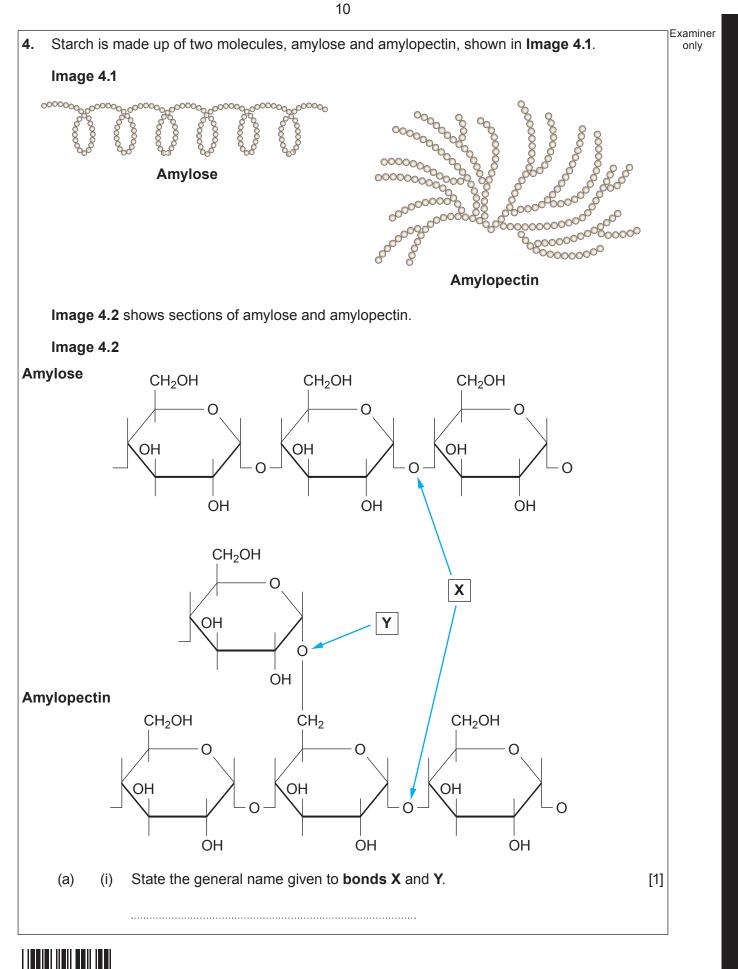

Difference	Mitosis	Meiosis
1.		
2.		

Table 3.2

Line	Substance	Type of transport
Α		
В		



	(ii) Explain the difference in the shape of lines A and B shown on Graph 3.1 .	[4]	Examine only
(b)	Red blood cells are packed full of haemoglobin. When mature, they do not contain any of the organelles usually found in eukaryotic cells.		
	Using this information and your knowledge of cell structure conclude why mature i blood cells:	red	C 7 C
	(i) cannot make haemoglobin;	[2]	
	 (ii) can only transport substances across the cell membrane against a concentra gradient at very low rates. 	tion [2]	
			10

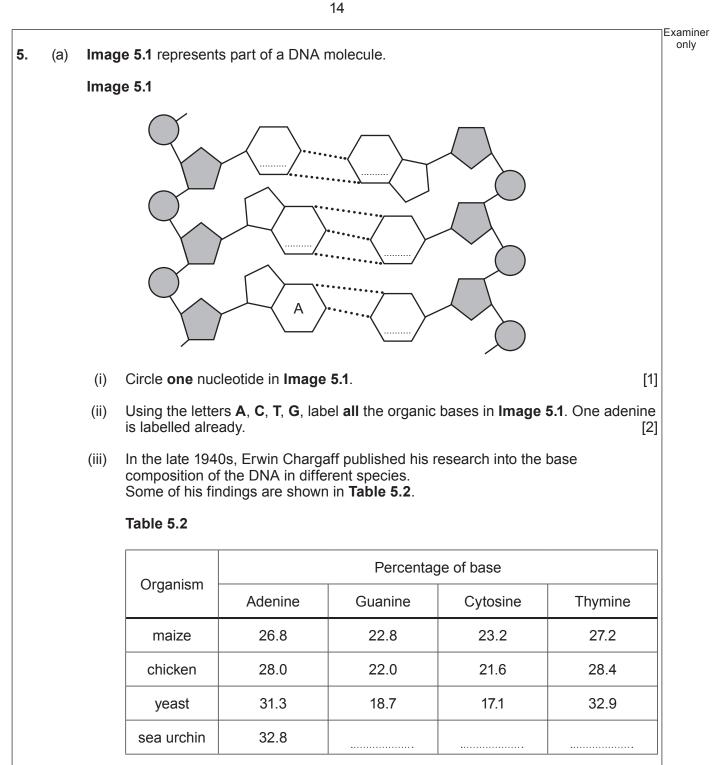
© WJEC CBAC Ltd.

2400U101 09

Examiner State one similarity and one difference between amylose and amylopectin, shown (ii) only in Images 4.1 and 4.2. [2] Similarity Difference (b) In order to be absorbed into the blood, starch has to be hydrolysed to produce glucose. The digestion of amylose happens in two stages as shown in Image 4.3. Image 4.3 Site of amylase Site of amylase action action 0 State what is meant by the term hydrolysis. [1] (i) Amylopectin is digested in a similar way but needs an additional enzyme, isomaltase, for complete hydrolysis. (ii) Explain the roles of the three enzymes involved in the complete hydrolysis of starch. [3]

11

2400U101 11


(iii)	One variety of corn used in animal feed has a lower amylose: amylopectin ratio than other varieties. With reference to Images 4.2 and 4.3 , suggest why this lower ratio results in an increase in the rate of starch hydrolysis. [2]	Examoni
(iv)	Describe a chemical test that could be used to show that starch is no longer present at the end of hydrolysis. [2]	
		11

13

I. Complete **Table 5.2** to suggest values for the sea urchin.

[1]

		I. Based on the results in Table 5.2 , state the conclusion that can be made regarding the base composition of DNA. Explain your answer.	de [3]
(b)	Meselso the theo replicatio	on and Stahl also carried out investigations on DNA in the 1950s. They propose ry of semi-conservative replication. State what is meant by semi-conservative on.	ed [2]
(C)		ntains only four different bases, but proteins can be made of up to 20 different cids. Explain how these four bases allow for the production of so many differer	nt [4]
	amino a proteins	cids. Explain how these four bases allow for the production of so many differer	[4]
	amino a proteins	cids. Explain how these four bases allow for the production of so many differer	[4]

Examiner 6. Tradescantia, shown in Image 6.1, is a house plant which is popular due to its ability to survive only long periods without watering because its stems can store water.

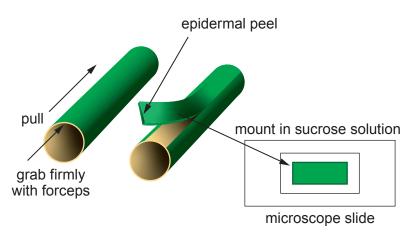
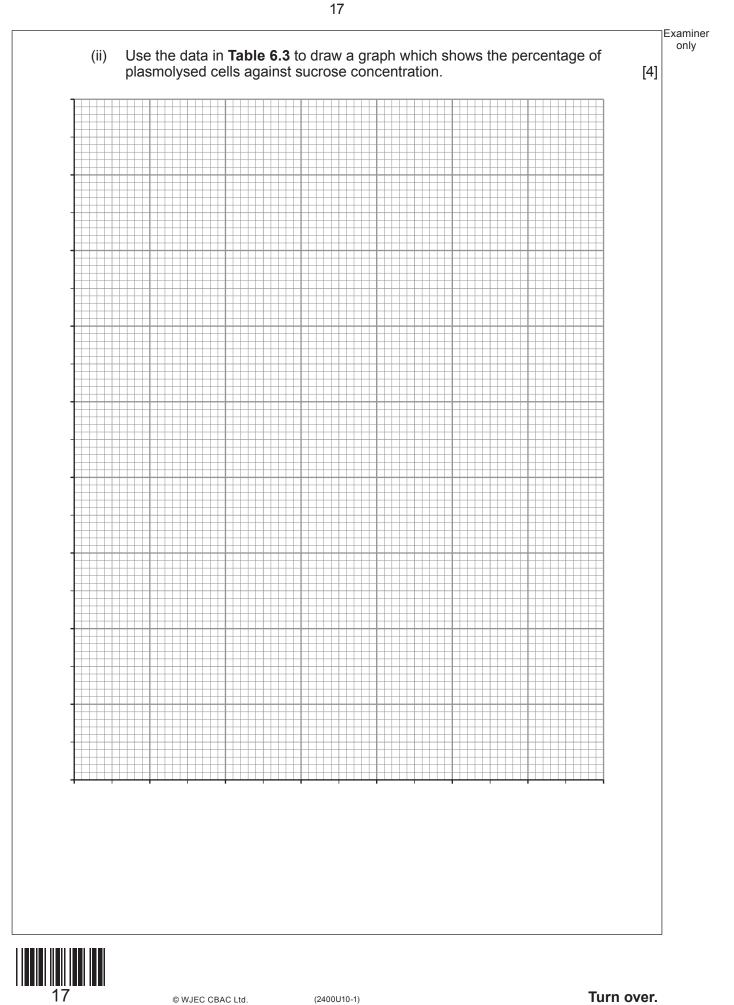

16

Image 6.1

The solute potential of the cells of the stem was measured by using epidermal peels as shown in Image 6.2. Each peel was mounted on a different microscope slide in a different concentration of sucrose solution.

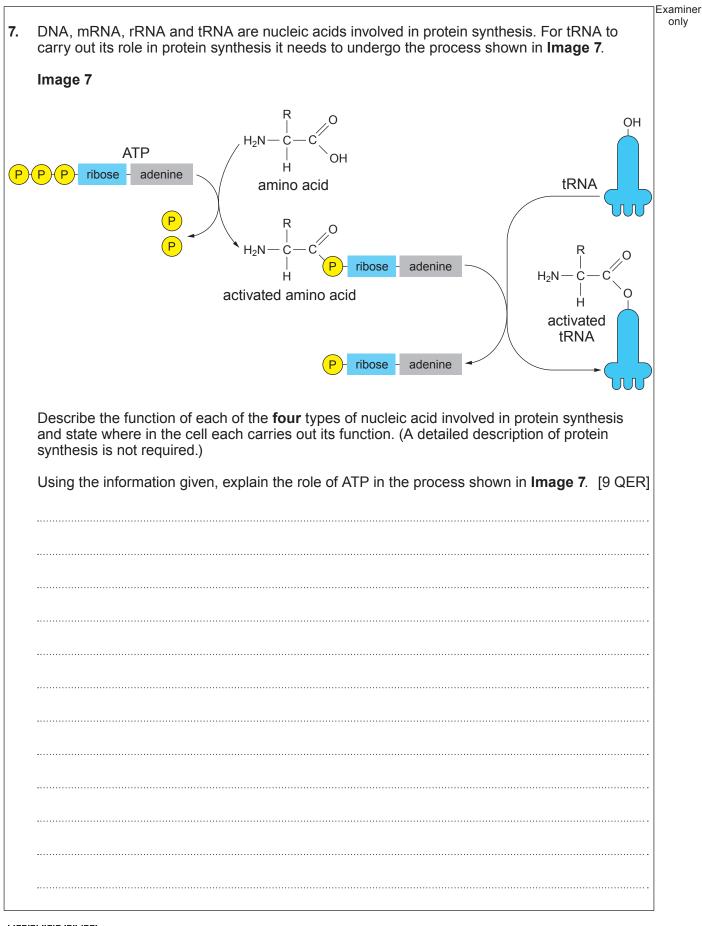
Image 6.2



After 10 minutes the peels were observed under a microscope. The number of plasmolysed and unplasmolysed cells in each sample was recorded. The results are shown in Table 6.3.

Table 6.3

Sucrose concentration/ mol dm ⁻³	Number of plasmolysed cells	Number of unplasmolysed cells	Total cells counted	Percentage of cells plasmolysed	
0.0	0	165	165	0.0	
0.2	20	174	194	10.3	
0.4	90	105	195	46.2	
0.6	87	69	156	55.8	
0.8	76	54	130	58.4	
1.0	172	73			
(a) (i) Complete Table 6.3 for $1.0 \mathrm{mol}\mathrm{dm}^{-3}$ sucrose. [2]					



© WJEC CBAC Ltd.

(2400U10-1)

				E:
	(iii)	I.	Use your graph and the formula below to estimate the solute potential or solution when 50% of the <i>Tradescantia</i> cells are plasmolysed.	f the [2]
			Solute potential (Ψ s) = – (sucrose concentration × 24.35)	
			Solute potential =	.kPa
		II.	State the pressure potential of the cells in the tissue of <i>Tradescantia</i> at t solute concentration and identify the term that describes their condition.	
	Press	sure p	ootential (Ψp) = kPa	
	Term	=		
(b)	Sugg	est h	ow the experiment could be altered to improve:	
			idence in the results	
	•	the a	accuracy of the estimated solute potential in <i>Tradescantia</i> cells.	[2]
				······

20	
	Exami

	Examine
······	

	Exami only
	9
END OF PAPER	
22 © WJEC CBAC Ltd. (2400U10-1)	

23

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

26

27

28

