This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Section A

1 (a) work done in moving unit mass from infinity (to the point) M1
 A1 [2]

(b) (i) gravitational potential energy = \(GMm / r \)
 energy = \((6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 4.5) / (1.74 \times 10^6) \) M1
 energy = \(1.27 \times 10^7 \) J A0 [1]

(ii) change in grav. potential energy = change in kinetic energy B1
 \(\frac{1}{2} \times 4.5 \times v^2 = 1.27 \times 10^7 \)
 \(v = 2.4 \times 10^3 \) m s\(^{-1} \) A1 [2]

(c) Earth would attract the rock / potential at Earth('s surface) not zero / <0
 / at Earth, potential due to Moon not zero escape speed would be lower M1
 A1 [2]

2 (a) (i) \(N \): (total) number of molecules B1 [1]

(ii) \(<c^2>\): mean square speed/velocity B1 [1]

(b) \(pV = \frac{1}{3}Nm<c^2> = NkT \)
 (mean) kinetic energy = \(\frac{1}{2} m<c^2> \)
 algebra clear leading to \(\frac{1}{2} m<c^2> = (3/2)kT \) C1 A1 [2]

(c) (i) either energy required = \((3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23} \) C1
 = 12.5 J (12J if 2 s.f.) A1 [2]
 or energy = \((3/2) \times 8.31 \times 1.0 \)
 = 12.5 J (C1)
 (A1)

(ii) energy is needed to push back atmosphere/do work against atmosphere so total energy required is greater M1
 A1 [2]

3 (a) (i) any two from 0.3(0) s, 0.9(0) s, 1.50 s (allow 2.1 s etc.) B1 [1]

(ii) either \(v = \omega x \) and \(\omega = 2\pi/T \) C1
 \(v = (2\pi/1.2) \times 1.5 \times 10^{-2} \)
 = 0.079 m s\(^{-1} \) M1
 A0 [2]
 or gradient drawn clearly at a correct position working clear (C1)
 (M1)
 to give \((0.08 \pm 0.01)\) m s\(^{-1} \) (A0)
(b) (i) sketch: curve from (±1.5, 0) passing through (0, 25)
reasonable shape (curved with both intersections between
y = 12.0→13.0)
M1
A1 [2]

(ii) at max. amplitude potential energy is total energy
B1 [2]
total energy = 4.0 mJ

4 (a) (i) force proportional to product of (two) charges and inversely
proportional to square of separation
reference to point charges
M1
A1 [2]

(ii) \[F = \frac{2 \times (1.6 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12} \times (20 \times 10^{-6})^2} \]
\[= 1.15 \times 10^{-18} \text{ N} \]
C1
A1 [2]

(b) (i) force per unit charge
on either a stationary charge
or a positive charge
M1
A1 [2]

(ii) 1. electric field is a vector quantity
electric fields are in opposite directions
charges repel
Any two of the above, 1 each
B2 [2]

2. graph: line always between given lines
crosses x-axis between 11.0 \(\mu \)m and 12.3 \(\mu \)m
reasonable shape for curve
A1 [3]

5 (a) (i) field shown as right to left
B1 [1]

(ii) lines are more spaced out at ends
B1 [1]

(b) Hall voltage depends on angle
either between field and plane of probe
or maximum when field normal to plane of probe
or zero when field parallel to plane of probe
M1
A1 [2]

(c) (i) (induced) e.m.f. proportional to rate
of change of (magnetic) flux (linkage)
(allow rate of cutting of flux)
M1
A1 [2]

(ii) e.g. move coil towards/away from solenoid
rotate coil
vary current in solenoid
insert iron core into solenoid
(any three sensible suggestions, 1 each)
B3 [3]
6 (a) force due to magnetic field is constant
 force is (always) normal to direction of motion
 this force provides the centripetal force
 B1

 A1 [3]

(b) \(\frac{mv^2}{r} = Bqv \)
 hence \(\frac{q}{m} = \frac{v}{Br} \)
 M1

 A0 [1]

(c) (i) \(\frac{q}{m} = \frac{(2.0 \times 10^7)}{(2.5 \times 10^{-3} \times 4.5 \times 10^{-2})} \)
 \(= 1.8 \times 10^{11} \text{ C kg}^{-1} \)
 C1

 A1 [2]

 (ii) sketch: curved path, constant radius, in direction towards bottom of
 page
 tangent to curved path on entering and on leaving the field
 M1

 A1 [2]

7 (a) either if light passes through suitable film / cork dust etc.
 diffraction occurs and similar pattern observed
 or concentric circles are evidence of diffraction
 or diffraction is a wave property
 M1

 A1 [2]

(b) (speed increases so) momentum increases
 \(\lambda = \frac{h}{p} \) so \(\lambda \) decreases
 hence radii decrease
 (special case: wavelength decreases so radii decreases – scores 1/3)
 or
 (speed increases so) energy increases
 \(\lambda = \frac{h}{\sqrt{2Em}} \) so \(\lambda \) decreases
 hence radii decrease
 B1

 M1

 A1 [3]

(c) electron and proton have same (kinetic) energy
 either \(E = \frac{p^2}{2m} \) or \(p = \sqrt{2Em} \)
 ratio = \(\frac{p_e}{p_p} = \sqrt{\left(\frac{m_e}{m_p}\right)} \)
 \(= \sqrt{(9.1 \times 10^{-31}) / (1.67 \times 10^{-27})} \)
 \(= 2.3 \times 10^{-2} \)
 C1

8 (a) energy to separate nucleons (in a nucleus)
 separate to infinity
 M1

 A1 [2]

(b) (i) fission
 B1 [1]

 (ii) 1. U: near right-hand end of line
 2. Mo: to right of peak, less than 1/3 distance from peak to U
 3. La: 0.4 → 0.6 of distance from peak to U
 B1 [1]
(iii) 1. right-hand side, mass = 235.922 u
 mass change = 0.210 u
 energy = \(mc^2 \)
 \[= 0.210 \times 1.66 \times 10^{-27} \times (3.0 \times 10^8)^2 \]
 \[= 3.1374 \times 10^{-11} \text{ J} \]
 \[= 196 \text{ MeV} \text{ (need 3 s.f.)} \]
 (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV or 932 MeV, allow 2/3)
 (use of \(1.67 \times 10^{-27} \) not \(1.66 \times 10^{-27} \) scores max. 2/3)

Section B

9 (a) operates on / takes signal from sensing device
 (so that) it gives an voltage output
 B1 [2]

(b) thermistor and resistor in series between +4 V line and earth
 \(V_{\text{OUT}} \) shown clearly across either thermistor or resistor
 \(V_{\text{OUT}} \) shown clearly across thermistor
 M1 A1 [3]

(c) e.g. remote switching
 switching large current by means of a small current
 isolating circuit from high voltage
 switching high voltage by means of a small voltage/current
 (any two sensible suggestions, 1 each to max. 2)
 B2 [2]

10 (a) pulse (of ultrasound)
 produced by quartz / piezo-electric crystal
 reflected from boundaries (between media)
 reflected pulse detected
 by the ultrasound transmitter
 signal processed and displayed
 intensity of reflected pulse gives information about the boundary
 time delay gives information about depth
 (four B marks plus any two from the four, max. 6)
 B1 [6]

(b) shorter wavelength
 smaller structures resolved / detected (not more sharpness)
 B1 [2]

(c) (i) \(I = I_0 e^{-\mu x} \)
 ratio = \(\exp(-23 \times 6.4 \times 10^{-2}) \)
 = 0.23
 C1 A1 [3]

(ii) later signal has passed through greater thickness of medium
 so has greater attenuation / greater absorption / smaller intensity
 M1 A1 [2]
11 (a) left-hand bit underlined
 B1 [1]

 (b) 1010, 1110, 1111, 1010, 1001
 (5 correct scores 2, 4 correct scores 1)
 A2 [2]

 (c) significant changes in detail of \(V \) between samplings
 so frequency too low
 M1
 A1 [2]

12 (a) e.g. logarithm provides a smaller number
 gain of amplifiers is series found by addition, (not multiplication)
 (any sensible suggestion)
 B1 [1]

 (b) (i) optic fibre
 B1 [1]

 (ii) attenuation/dB \(= 10 \log(P_2/P_1) \)
 \(= 10 \log((6.5 \times 10^{-3})/(1.5 \times 10^{-15})) \)
 \(= 126 \)
 length \(= 126 / 1.8 \)
 \(= 70 \text{ km} \)
 A1 [3]