Oxford Cambridge and RSA

GCE

Chemistry A

Unit F321: Atoms, Bonds and Groups
Advanced Subsidiary GCE
Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2016

Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ECF	Incorrect response
I	Error carried forward
NAQ	Ignore
NBOD	Not answered question
POT	Benefit of doubt not given
A	Power of 10 error
RE	Omission mark
$\mathbf{S F}$	Rounding error
\boldsymbol{N}	Error in number of significant figures
	Correct response

Abbreviations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be annotated with ticks \qquad , crosses xetc to show where marks have been awarded in the body of the text ignore $2 b i$

Question			Answer				Mark	For relative masses GuidanceALLOW $1 / 1800$ to $1 / 2000$ for electron value(0.0005-0.00056)ALLOW 'negligible' for electron valueIGNORE ' + ' in front of correct valuesDO NOT ALLOW '' in fron of $1 / 2000$DO NOT ALLOW 'nil' OR 'zero' for mass of electronFor relative chargesALLOW 1+ and 'neutral' and 1-IGNORE ' '' (ie a dash) for neutronDO NOT ALLOW ''+ 'r ' '' without ' 1 'DO NOT ALLOW '1' without chargeFor position within the atomIGNORE 'middle OR 'centre' for 'nucleus'
1	(a)		particle proton neutron electron Relative mass Relative charg	relative mass unn \checkmark ND positio	relative charge $+1$ nil/0 - 1 olumns	position within the atom nucleus nucleus shell	2	
1	(b)	(i)	$\begin{aligned} & \text { s-orbital = sph } \\ & \text { AND } \\ & \text { p-orbital = dum } \end{aligned}$	al ell shape			1	For s-orbital IGNORE 'circular' For p-orbital ALLOW other words indicating 3-D shape of p-orbital eg 'Peanut-shaped' OR hour glass etc ALLOW 'figure of eight' OR 'figure of 8' IGNORE diagrams
1		(ii)	p-orbitals have (three) p-orbit	ater ener have equa	han s-orb ergy		2	ALLOW reverse argument ALLOW suitable energy diagram for either part

	uest	Answer	Mark	Guidance
1	(c)	${ }_{\mathrm{x}}^{\mathrm{x}} \mathrm{~N} \underset{\stackrel{i}{\dot{x}}}{\stackrel{\dot{x}}{\dot{x}} \mathrm{x}} \mathrm{~N}$	1	ALLOW all dots or all crosses.
1	(d)	First check the answer line. If answer $=1.7(0) \times 10^{-3}$ award 2 marks. M1 (Dividing by 6.02×10^{23}) Number of N_{2} molecules $=\frac{5.117 \times 10^{20}}{6.02 \times 10^{23}}=8.5 . \times 10^{-4}$ OR 0.85×10^{-3} OR 0.085×10^{-2} OR 0.0085×10^{-1} OR 0.00085 M2 (Correct conversion of molecules to atoms + standard form) M1 $\times 2$ and in standard form \checkmark From 0.0085, answer $=2 \times 0.00085=0.00170$ $=1.7(0) \times 10^{-3}$ Alternative method M1 (Correct conversion of molecules to atoms) $=5.117 \times 10^{20} \times 2=1.02(34) \times 10^{21}$ OR $10.2(34) \times 10^{20}$ OR 102.(34) $\times 10^{19}$ etc $\begin{aligned} & \text { M2 (Correct use of } 6.02 \times 10^{23}+\text { standard form) } \\ & \frac{1.02(34) \times 10^{21}}{6.02 \times 10^{23}}=1.7(0) \times 10^{-3} \end{aligned}$	2	ALLOW one mark for 0.17×10^{-2} OR 0.017×10^{-1} OR 0.0017 (not standard form) ALLOW one mark for 4.25×10^{-4} (dividing by 2 in M2 + standard form) ALLOW one mark for 6.16×10^{44} (multiplying by 6.02×10^{23} in M1 + standard form)

| Question | | Answer | Mark | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{1}$ | (e) | (i) | $\begin{array}{c}\mathrm{N}_{2} \mathrm{O}_{3}=+3 \\ \mathrm{NO}_{3}=+2\end{array}$ | |
| $\mathrm{NO}_{2}=+4$ | | | | |$)$

| Question | | Answer | Mark | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | (a) | Simple molecular lattice \checkmark | ALLOW 'simple covalent' OR 'simple molecular'
 ie 'simple' must be seen.
 DO NOT ALLOW 'simple covalent bonds' | |
| $\mathbf{2}$ | (b) | (i)M1 Creating the dipole mark
 Uneven distribution of electrons \checkmark
 M2 Type of dipole mark
 This creates/causes an instantaneous dipole
 OR temporary dipole \checkmark | IGNORE use of 'atoms' for M1 and M2
 ALLOW (random) movement of electrons
 ALLOW change in electron density | |

Question		Answer	Mark	Guidance
2	(c)			

Question		Answer	Mark	Guidance
3	(a)	Periodicity \checkmark	1	
3	(b)	Sodium OR Na Silicon OR Si \downarrow Neon OR Ne \checkmark	3	
3	(c)	$\mathrm{Ga}^{3+} \checkmark$	1	
3	(d)	M1 Number of bonding electrons mark Magnesium has more outer OR bonding electrons M2 Ionic charge mark Magnesium ions have a greater (positive) charge (density) M3 Attraction mark Magnesium has a greater attraction between ions and delocalised electrons	3	ALLOW reverse argument throughout ALLOW 'more delocalised electrons' for 'more outer electrons' DO NOT ALLOW 'Magnesium molecules' for M1 ALLOW Mg^{2+} ion OR Mg ion for 'magnesium ion' ALLOW Mg^{2+} and Na^{+}for M2 (may be seen in a diagram) IGNORE magnesium has a greater charge but ALLOW magnesium has a greater ionic charge IGNORE nuclear charge DO NOT ALLOW 'atoms' or 'molecules' having a greater charge for M2 ALLOW 'stronger metallic bonds' only when a clear description of metallic bonding is given. Eg 'The attraction of positive (metal) ions to delocalised electrons' QWC 'delocalised/delocalized' spelled correctly at least once in context of M3 (may be seen in M1 but used in M3) 'delocalised' need not be directly next to electrons eg Mg has more delocalised electrons and the ions have a greater attraction to these electrons would secure M3

Question			Answer	Mark	Guidance
3	(e)		First check the answer line. If answer $=1200 \mathrm{~cm}^{3}$ award 3 marks. Mol of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=\frac{2.966}{148.3}=2(.00) \times 10^{-2}$ OR 0.02(00) mol V Mol of gas $=2(.00) \times 10^{-2} \times 5 / 2=5(.00) \times 10^{-2}$ OR 0.05(00) mol Vol of Gas $=0.05 \times 24000=1200 \mathrm{~cm}^{3} \checkmark$	3	If answer $=960 \mathrm{~cm}^{3}$ award 2 marks. If answer $=240 \mathrm{~cm}^{3}$ award 2 marks. ALLOW ECF for answers to at least two significant figures up to calculator value, correctly rounded ALLOW separate numbers of mol of each gas for M2 (0.04(00) $\mathrm{mol} \mathrm{NO}_{2}$ and $0.0100 \mathrm{~mol} \mathrm{O}_{2}$) ALLOW a second mark if only volume of $\mathrm{O}_{2}\left(240 \mathrm{~cm}^{3}\right)$ OR only volume of $\mathrm{NO}_{2}\left(960 \mathrm{~cm}^{3}\right)$ is calculated
3	(f)	(i)	SF_{6} AND Sulfur(VI) fluoride OR Sulfur hexafluoride	1	IGNORE sulfur fluoride
		(ii)	$2 \mathrm{~F}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{~F}_{2} \mathrm{O}+2 \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}$ M1 $\mathrm{F}_{2} \mathrm{O}$ AND $\mathrm{NaF} \checkmark$ M2 Rest of equation (including balance)	2	ALLOW multiples IGNORE state symbol ALLOW OF_{2} for $\mathrm{F}_{2} \mathrm{O}$ AND FNa for NaF ALLOW both marks for alternative equations which have both $\mathrm{F}_{2} \mathrm{O}$ and NaF AND three products $\mathrm{Eg}_{3} \mathrm{~F}_{2}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{~F}_{2} \mathrm{O}+2 \mathrm{NaF}+\mathrm{H}_{2}$ $\mathrm{Eg}_{2} \mathrm{~F}_{2}+\mathrm{NaOH} \rightarrow \mathrm{F}_{2} \mathrm{O}+\mathrm{NaF}+\mathrm{HF}$
3	(g)	(i)	δ - on each F AND $\delta+$ on $\mathrm{O} \checkmark$	1	ALLOW $\delta 2+$ OR $\delta+\delta+$ on O
		(ii)	Shape: non-linear AND Bond angle: 104.5°	1	For shape ALLOW alternative words eg 'V-shaped' 'bent' ‘angular'. In the absence of words allow a diagram with a non-linear shape F - $\mathrm{O}-\mathrm{F}$ bond angle $>90^{\circ}$. For bond angle ALLOW 106 $>$ bond angle $\geq 102\left(\right.$ Actual $\left.=102^{\circ}\right)$
		(iii)	$+2 \checkmark$	1	ALLOW 2+
			Total	17	

Question			Answer	Mark	Guidance
4	(a)		$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} \checkmark$	1	ALLOW 4s ${ }^{2} 3 \mathrm{~d}^{10}$
4	(b)	(i)	M1 The (weighted) mean mass of an atom (of an element) M2 Compared with $1 / 12^{\text {th }}$ (the mass) M3 Of (one atom of) carbon-12	3	ALLOW 'average' for 'mean' ALLOW 'mean mass of isotopes' but DO NOT ALLOW 'mean mass of isotope' (singular) DO NOT ALLOW 'mean mass of an element' For M2 and M3 ALLOW compared with the mass of carbon-12 which is 12 ALLOW for three marks Mass of one mole of atoms Compared to $1 / 11^{\text {th }}$ (mass of) one mole OR 12 g of carbon-12 ALLOW for three marks Mass of one mole of atoms $1 / 12^{\text {th }}$ (mass of) one mole OR 12 g of carbon-12
4	(b)	(ii)	First check the answer line. If answer $=65.44$ award 2 marks. $\frac{(64 \times 49.0)+(66 \times 27.9)+(67 \times 4.3)+(68 \times 18.8)}{100}$ OR $31.36(0)+18.414+2.881+12.784$ OR 65.439 $=65.44 \checkmark$	2	ALLOW one mark for ECF from transcription error in the first sum provided the final answer is to two decimal places and is between 64 and 68 and is a correct calculation of the transcription
4	(c)	(i)	Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR zinc carbonate would dissolve OR disappear	1	ALLOW 'carbon dioxide produced' DO NOT ALLOW incorrectly named gas eg H_{2}

Question			Answer	Mark	Guidance
4	(c)	(ii)	$\mathrm{ZnCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols
4	(d)	(i)	Magnesium (atoms) has been oxidised AND Because it has lost two electrons Copper (ions) has been reduced AND Because it has gained two electrons \checkmark	2	IGNORE use of oxidation numbers if electron gain/loss is mentioned. Electrons gain/loss could be in half equations In the absence of text look for evidence on the equation ALLOW 'donated' for 'lost' Assume 'Cu' refers to copper in 'CuSO ${ }_{4}$ ' ALLOW one mark two electrons gained and lost for each species but oxidation/reduction is incorrect or is omitted ALLOW one mark for correct oxidation and reduction if electron transfer is omitted and correct changes of oxidation state are shown (ie Mg $0-->(+) 2$ AND Cu (+)2 to 0) ALLOW 'two electrons transferred from magnesium to copper'
4	(d)	(ii)	$\mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Correct reactants and products \checkmark Balance and state symbols \checkmark	2	ALLOW multiples ALLOW $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$ ALLOW Mg(s) $+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ OR $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$--> $\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$ including state symbols for one mark

Question			Answer	Mark	Guidance
4	(e)		First check the answer line. If answer $=0.120$ award 4 marks. M1 Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}=3.00 \times 10^{-2} \times \frac{35.0}{1000}=1.05 \times 10^{-3} \mathrm{~mol}$ M 2 Mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\frac{1.05 \times 10^{-3}}{3}=3.5(0) \times 10^{-4} \mathrm{~mol}$ $\mathrm{M} 3=342.3 \checkmark$ M4 Mass $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=3.5(0) \times 10^{-4} \times 342.3$ and $=0.120 \mathrm{~g}$ Answer must be $\mathbf{3}$ sf	4	ALLOW ECF ALLOW 0.00105 mol ALLOW 0.00035(0) mol ALLOW 342 DO NOT ALLOW 0.12
4	(f)	(i)	$\mathrm{Ca}(\mathrm{OH})_{2}$ OR Calcium hydroxide OR CaO OR Calcium oxide \checkmark	1	ALLOW Calcium carbonate $\mathrm{OR} \mathrm{CaCO}_{3}$
4	(f)	(ii)	$6 \mathrm{Ca}+\mathrm{P}_{4} \rightarrow 2 \mathrm{Ca}_{3} \mathrm{P}_{2} \checkmark$	1	ALLOW multiples IGNORE state symbols

Question	Answer	Mark	Guidance
(iii)	$3 x\left[\left[\begin{array}{c} x_{x x} \\ x_{x} \operatorname{Cax}_{x}^{x} \\ x]^{2+} \end{array} \quad 2 x\left[\begin{array}{c} \bullet \bullet \\ \dot{x} P_{0}^{x} \\ 0 x \end{array}\right]^{2}\right.\right.$ Ca with 8 (or no) electrons AND phosphide ion with dot-and-cross outermost octet \checkmark Three Ca ions AND two phosphide ions with correct charges	2	For first mark: If 8 electrons are shown on the cation then the extra electron in the anion must match the symbol chosen for the electrons in the cation. IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one of each ion is drawn. ALLOW (brackets not required) $3\left[\mathrm{Ca}^{2+}\right] 3[\mathrm{Ca}]^{2+}\left[\mathrm{Ca}^{2+}\right]_{3}$ $2\left[\mathrm{P}^{3-}\right] 2[\mathrm{P}]^{3-}\left[\mathrm{P}^{3-}\right]_{2}$ DO NOT ALLOW $\left[\mathrm{Ca}_{3}\right]^{2+}[3 \mathrm{Ca}]^{2+}[\mathrm{Ca}]_{3}{ }^{2+}$ $\left[\mathrm{P}_{2}\right]^{3-} \quad[2 \mathrm{P}]^{3-}\left[\mathrm{P}_{2}{ }^{3-}\right.$
	Total	20	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

