This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
1 (a) (gravitational) potential at infinity defined as/is zero

(gravitational) force attractive so work got out/done as object moves from infinity

so potential is negative

B1 [2]

(b) (i) \[\Delta E = m \Delta \phi \]

\[= 180 \times (14 - 10) \times 10^8 \]

\[= 7.2 \times 10^{10} \text{ J} \]

increase

B1 [3]

(ii) energy required = 180 \times (10 - 4.4) \times 10^8

or

energy per unit mass = (10 - 4.4) \times 10^8

or

\[\frac{1}{2} \times 180 \times v^2 = 180 \times (10 - 4.4) \times 10^8 \]

or

\[\frac{1}{2} \times v^2 = (10 - 4.4) \times 10^8 \]

\[v = 3.3 \times 10^4 \text{ m s}^{-1} \]

A1 [3]

2 (a) e.g. time of collisions negligible compared to time between collisions

no intermolecular forces (except during collisions)

random motion (of molecules)

large numbers of molecules

(total) volume of molecules negligible compared to volume of containing vessel

or

average/mean separation large compared with size of molecules

any two

B2 [2]

2 (b) (i) mass = \[4.0 / (6.02 \times 10^{-23}) = 6.6 \times 10^{-24} \text{ g} \]

or

mass = \[4.0 \times 1.66 \times 10^{-27} \times 10^3 = 6.6 \times 10^{-24} \text{ g} \]

B1 [1]

(ii) \[\frac{3}{2} kT = \frac{1}{2} m \langle c^2 \rangle \]

\[\frac{3}{2} \times 1.38 \times 10^{-23} \times 300 = \frac{1}{2} \times 6.6 \times 10^{-27} \times \langle c^2 \rangle \]

\[\langle c^2 \rangle = 1.88 \times 10^6 \text{ (m}^2 \text{s}^{-2}) \]

C1

r.m.s. speed = \[1.4 \times 10^3 \text{ m s}^{-1} \]

A1 [3]
3 (a) acceleration/force proportional to displacement (from fixed point) M1
 acceleration/force and displacement in opposite directions A1 [2]

(b) maximum displacements/accelerations are different B1
 graph is curved/not a straight line B1 [2]

(c) (i) $\omega = \frac{2\pi}{T}$ and $T = 0.8$ s C1
 $\omega = 7.9$ rad s$^{-1}$ A1 [2]

(ii) $a = (-)\omega^2 x$
 $= 7.85^2 \times 1.5 \times 10^{-2}$ C1
 $= 0.93$ ms$^{-2}$ or 0.94 ms$^{-2}$ A1 [2]

(iii) $\Delta E = \frac{1}{2} m\omega^2 (x_0^2 - x^2)$ C1
 $= \frac{1}{2} \times 120 \times 10^{-3} \times 7.85^2 \times \{(1.5 \times 10^{-2})^2 - (0.9 \times 10^{-2})^2\}$ C1
 $= 5.3 \times 10^{-4}$ J A1 [3]

4 (a) (i) product of speed and density M1
 reference to speed in medium (and density of medium) A1 [2]

(ii) α: ratio of reflected intensity and/to incident intensity B1

 Z_1 and Z_2: (specific) acoustic impedances of media (on each side of boundary) B1 [2]

(b) in muscle: $I_M = I_0 e^{-\mu x}$
 $= I_0 \exp(-23 \times 3.4 \times 10^{-2})$ C1

$I_M / I_0 = 0.457$ C1

at boundary: $\alpha = (6.3 - 1.7)^2 / (6.3 + 1.7)^2$
 $= 0.33$ C1

$I_T / I_M = [(1 - \alpha) =] 0.67$ C1

$I_T / I_0 = 0.457 \times 0.67 = 0.31$ A1 [5]
5 (a) (i) \(1011\)

(ii)

<table>
<thead>
<tr>
<th>(t) (ms)</th>
<th>(0)</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
<th>1.25</th>
<th>1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>1011</td>
<td>0110</td>
<td>1000</td>
<td>1110</td>
<td>0101</td>
<td>0011</td>
<td>0001</td>
</tr>
</tbody>
</table>

All 6 correct, 2 marks. 5 correct, 1 mark.

(b) sketch: 6 horizontal steps of width 0.25 ms shown
steps at correct heights and all steps shown
steps shown in correct time intervals

(c) increase sampling frequency/rate
so that step width/depth is reduced
increase number of bits (in each number)
so that step height is reduced

6 (a) sketch: from \(x = 0\) to \(x = R\), potential is constant at \(V_s\)
smooth curve through \((R, V_s)\) and \((2R, 0.5V_s)\)
smooth curve continues to \((3R, 0.33V_s)\)

(b) sketch: from \(x = 0\) to \(x = R\), field strength is zero
smooth curve through \((R, E)\) and \((2R, 0.25E)\)
smooth curve continues to \((3R, 0.11E)\)

7 (a) line has non-zero intercept/line does not pass through origin
charge is/should be proportional to potential (difference)
or charge is/should be zero when p.d. is zero
therefore there is a systematic error
(b) reasonable attempt at line of best fit
 use of gradient of line of best fit clear
 \[C = 2800 \, \mu F \text{ (allow } \pm 200 \, \mu F) \]
 A1 [3]

(c) energy = \(\frac{1}{2} CV^2 \) or energy = \(\frac{1}{2} QV \) and \(C = Q / V \)
 \[\Delta \text{ energy} = \frac{1}{2} \times 2800 \times 10^{-6} \times (9.0^2 - 6.0^2) \]
 \[= 6.3 \times 10^{-2} \text{ J} \]
 A1 [3]

8 (a) op-amp has infinite/(very) large gain
 op-amp saturates if \(V^+ \neq V^- \)
 \(V^+ \) is at earth potential so P (or \(V^- \)) must be at earth
 A1 [3]

(b) input resistance to op-amp is very large
 or
 current in \(R_2 = \) current in \(R_1 \)
 \[V_{IN} (-0) = IR_2 \text{ and } (0) - V_{OUT} = IR_1 \]
 M1
 \[V_{OUT} / V_{IN} = -R_1 / R_2 \]
 A1 [3]

(c) relay coil connected between \(V_{OUT} \) and earth
 correct diode symbol connected between \(V_{OUT} \) and coil or between coil and earth
 correct polarity for diode ('clockwise')
 M1
 A1 [3]

9 (a) 0.10 mm
 B1 [1]

(b) \[V_H = (0.13 \times 3.8) / (6.0 \times 10^{28} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19}) \]
 \[= 5.1 \times 10^{-7} \text{ V} \]
 A1 [2]

10 (a) (non-uniform) magnetic flux in core is changing
 induces (different) e.m.f. in (different parts of) the core
 (eddy) currents form in the core
 which give rise to heating
 M1
(b) as magnet falls, tube cuts magnetic flux \(M_1 \)
e.m.f./(eddy) currents induced in metal/aluminium (tube) \(A_1 \)
(eddy) current heating of tube \(M_1 \)
with energy taken from falling magnet \(A_1 \)
or
(eddy) currents produce magnetic field \(\text{(M1)} \)
that opposes motion of magnet \(\text{(A1)} \)
so magnet B has acceleration < \(g \)
or
magnet B has smaller acceleration/reaches terminal speed \(A_1 \) [5]

11 (a) period = 15 ms \(C_1 \)

frequency \((= 1 / T) = 67 \text{ Hz} \) \(A_1 \) [2]

(b) zero \(A_1 \) [1]

(c) \(I_{\text{r.m.s.}} = I_0 / \sqrt{2} \) \(C_1 \)

\(= 0.53 \text{ A} \) \(A_1 \) [2]

(d) energy = \(I_{\text{r.m.s.}}^2 \times R \times t \) or \(\frac{1}{2} I_0^2 \times R \times t \)

or

power = \(I_{\text{r.m.s.}}^2 \times R \) and energy = power \(\times t \) \(C_1 \)

energy = \(0.53^2 \times 450 \times 30 \times 10^{-3} \)

\(= 3.8 \text{ J} \) \(A_1 \) [2]

12 (a) (in a solid electrons in) neighbouring atoms are close together \(\text{(M1)} \)
(this changes their electron energy levels \(\text{M1} \)
(many atoms in lattice) cause a spread of energy levels into a band \(A_1 \) [3]
(b) photons of light give energy to electrons in valence band
 electrons move into the conduction band
 leaving holes in the valence band
 these electrons and holes are charge carriers
 increased number/increased current, hence reduced resistance

13 (a) e.g. background count (rate)/radiation
 multiple possible counts from each decay
 radiation emitted in all directions
 dead-time of counter
 (daughter) product unstable/also emits radiation
 self-absorption of radiation in sample or absorption in air/detector window
 three sensible suggestions, 1 each

(b) \[A = A_0 \exp(-\ln 2 \times t / T_{1/2}) \]
 \[1.21 \times 10^2 = 3.62 \times 10^4 \exp(-\ln 2 \times 42.0 / T_{1/2}) \]
 \or\
 \[1.21 \times 10^2 = 3.62 \times 10^4 \exp(-\lambda \times 42.0) \]
 \[T_{1/2} = 5.1 \text{ minutes (306 s)} \]

(c) discrete energy levels (in nuclei)