

Wednesday 18 November 2020 – Afternoon

GCSE (9–1) Combined Science B (Twenty First Century Science)

J260/08 Combined Science (Higher Tier)

Time allowed: 1 hour 45 minutes

You must have:

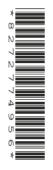
- · a ru er (cm/mm)
- the Data Sheet for GCSE (9-1) Comb ned Sc ence B (ns de th s document)

You can use:

- · an HB penc
- · a sc ent f c or graph ca ca cu ator

Please write cle	arly in	black	ink.	Do no	ot writ	e in the barcodes.		
Centre number						Candidate number		
First name(s)								
Last name								

INSTRUCTIONS


- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 75.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 16 pages.

ADVICE

· Read each question carefully before you start your answer.

Answer all the questions.

1 (a) Complete the sentences about the greenhouse effect.

Use words from the list.

You can use each word once, more than once or not at all.

absorbed	microwave	reflected	methane
ultraviolet	scattered	nitrogen	infrared
The Earth receive	es electromagnetic	radiation from the	Sun. Some of this radiation
is	by	the Earth's surfac	e, causing it to warm up.
	radiation i	s then emitted from	the Earth's surface. Some of this
radiation is then		by greenhous	e gases in the atmosphere such
as carbon dioxide a	and	, which is	s then re-emitted in all directions. [4]

(b) Carbon dioxide is a greenhouse gas.

Fig. 1.1 shows the mass of carbon released worldwide every year from 1900 to 2014.

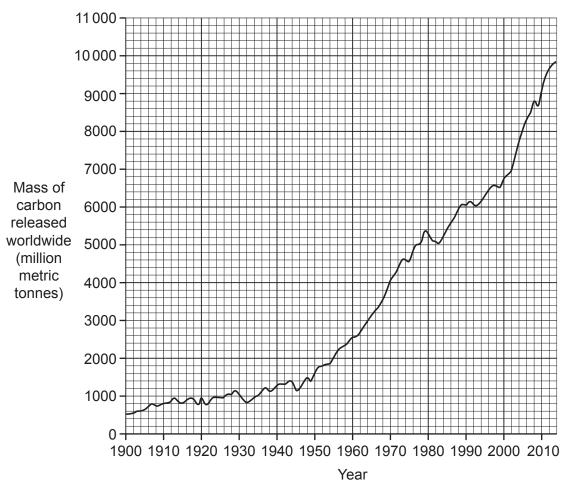
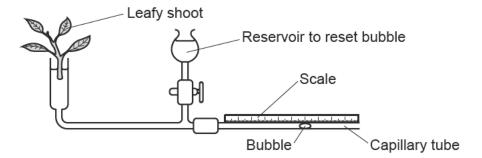


Fig. 1.1

(i)	Describe the trend shown in Fig. 1.1 and suggest two possible explanations for trend.	· this
	Trend	
	Explanation 1	
	Explanation 2	
		[3
(ii)	Give one reason why the data in Fig. 1.1 may be inaccurate.	
		. [1]
(iii)	Describe two effects of the trend seen in Fig. 1.1 .	
	Effect 1	
	Effect 2	
		[2


(c)		rbon capture and storage is a process where carbon dioxide is collected and derground.	stored
	Sug	ggest two negative effects of carbon capture and storage on the environment.	
	1		
	2		
			[2]
(d)	(i)	Coal and oil are non-renewable sources of energy.	
		Biofuels such as wood or straw pellets are renewable sources of energy.	
		How are non-renewable sources of energy different from renewable sources of en	ergy?
			[1]
	(ii)	Biofuels are carbon neutral. This means that their use does not increase carbon devels in the atmosphere. Coal is not carbon neutral.	lioxide
		Which two statements explain why biofuels are carbon neutral?	
		Tick (✓) two boxes.	
		Biofuels release water when they burn.	
		Plants take in carbon dioxide when they photosynthesise.	
		Biofuels release less sulfur dioxide when burnt.	
		Plants give out carbon dioxide when they respire.	
		Burning plants releases the same mass of carbon dioxide they absorb.	
			[2]

5 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© OCR 2020 Turn over

2 Ben is investigating the rate of water uptake by a plant, using a potometer as shown in the diagram.

(a) (i	i)	Suggest one addition to the diagram before Ben starts his investigation.
		[1]
(ii)	i)	Explain your answer to (a)(i).
		[1]

(b) Ben makes the improvement to the apparatus, and then conducts his experiment five times, under different **environmental** conditions each time.

He records how far the bubble moves in 20 minutes, as shown in the table.

Experiment	1	e of bubble along Distance move lary tube (mm) bubble (mm	
	Start position	End position	
1	15	18	3
2	18	27	9
3	27	38	11
4	12	21	9
5	21	38	17

	5	21	38	17	
(i)	The result in Experime to a higher temperature		tly higher than the	other results, and	could be due
	Explain the effect of a	higher temperatu	ire on the rate of w	vater uptake.	
			•••••	•••••	
					[1
(ii)	Suggest two other significantly increase				changed to
	1				
	2				

(c)	Ben conducts one of the experiments at a much higher temperature. In these conditions many of the stomata will close .
	Which experiment shows the expected data for this environmental condition?
	Explain your answer.
	Experiment
	Explanation
	[2]
(d)	The internal cross-section of the capillary tube has an area of 0.8 mm ² .
	Calculate the rate of water uptake in Experiment 2.
	Rate of water uptake = mm ³ /min [3]
(e)	What steps does Ben need to follow to make a valid comparison of the rate of transpiration for two different species of plant?
	Include the control variables and dependent variable in your answer.
	[4]

(a)	Lay	ia is investigating two fixed resistors.
		e sets up an electrical circuit with a 9V battery to calculate the resistance of each resistor parately.
	Dra	w a circuit diagram of this electrical circuit in the box.
		[3]
(b)		la says that placing the two resistors in parallel should give the same total resistance in circuit as placing them in series.
	ls L	ayla correct?
	Yes	No
	Exp	plain your answer.
		[2]
(c)	Lav	la calculates that the resistance of each resistor is 100Ω .
(-)	(i)	Calculate the total resistance in Layla's circuit when the two resistors are connected in series.
		Total resistance in series = Ω [1]
	(ii)	Estimate the total resistance in Layla's circuit when the two resistors are connected in parallel.
		Estimated total resistance in parallel = Ω [1]

(d) Layla replaces the old motor in a 12V electric toy car with a new motor, as shown in the diagram.

She also has access to four different resistors, 10Ω , 12Ω , 16Ω , and 20Ω .

What is the minimum size resistor that Layla needs to put into the series circuit of the electric toy car to avoid the new motor overheating and breaking?

Resistor =	 Ω	[3]	۱

© OCR 2020 Turn over

	Element	Reaction with water	
(b)	Table 4.1 shows	s some Group 2 elements and	heir reaction with water.
	Include state sy	mbols.	
	Write the balanc	ced symbol equation for the re	action of sodium with chlorine.
4 (a)	Sodium is an ele	ement in Group 1 of the Period	c Table.

Element	Reaction with water
Beryllium	No reaction
Magnesium	Reacts with steam
Calcium	Reacts slowly with cold water
Strontium	

Table 4.1

(i)	Predict the reaction of strontium with water.
	[1]

(ii)* Table 4.2 shows the melting point of some Group 2 oxides.

Oxide	Melting point (°C)
Magnesium oxide	2852
Calcium oxide	2572
Strontium oxide	2531
Barium oxide	1923

Table 4.2

Table 4.3 shows the ionic radius of Group 2 ions, and the oxide ion.

Element	lon	lonic radius (nm)
Magnesium	Mg ²⁺	0.072
Calcium	Ca ²⁺	0.100
Strontium	Sr ²⁺	0.118
Barium	Ba ²⁺	0.135
Oxygen	O ²	0.140

Table 4.3

Explain the trend in meiting points for the Group 2 oxides shown in Table 4.2.
Use data from Table 4.2 and Table 4.3 , and your knowledge of ionic bonding, to support your answer.

Turn over

5	(a)	a) Explain how electron microscopy has increased our understanding of cells.					
			••••				
			[21				
	(b)	Fig. 5.1 shows an electron microscope image of a leaf cell.	r-1				
©	Coll	lege of Arts and Science, Miami University. Item removed due to third party copyright restrictions.					
		Fig. 5.1					
		(i) Which part of the leaf cell contains chlorophyll?					
		Tick (✓) one box.					
		A					
		В					
		c					
		D	[1]				

1	(ii)	The actual	distance	hetween	lines P	and C	ei C	5.83	ıım
١	(11)	THE actual	uistarice	DEIMEEII	IIIIGS E	and C	× 10	J.05	um.

Calculate the magnification used to create the image in Fig. 5.1.

Use the equation: measured size = actual size × magnification

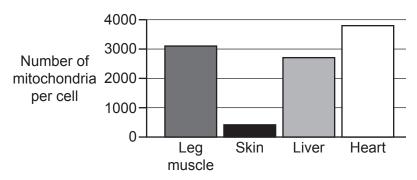
$$1 \, \text{mm} = 1000 \, \mu \text{m}$$

Give your answer in standard form.

(c) Cellular respiration takes place in both the mitochondria and cytoplasm of animal cells.

Which statements about cellular respiration in animal cells are true, and which are false?

Tick (✓) one box in each row.

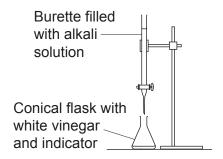

© OCR 2020

	True	False
Cellular respiration is exothermic.		
Cellular respiration releases water in both the mitochondria and cytoplasm.		
Lactic acid is only made by cellular respiration that takes place in the cytoplasm.		
Oxygen is used for cellular respiration in the cytoplasm.		

[3]

Turn over

(d) The number of mitochondria in different body cells of a healthy human is shown in the graph.


Explain the trend shown in the graph.	

6 Mia has a bottle of white vinegar which states that it contains 6.0% ethanoic acid by volume. White vinegar is a colourless solution of ethanoic acid in water.

Mia checks the percentage of ethanoic acid by volume in white vinegar by titrating the white vinegar with an alkali solution.

Some of Mia's procedure is shown below:

- Stage 1. Transfer 25 cm³ of white vinegar from a measuring cylinder to a conical flask.
- Stage 2. Add a few drops of universal indicator to the conical flask.

(a) Mia's teacher says that she can improve the procedure for both stage 1 and stage 2 of this experiment.

State **one** improvement for each stage of this experiment, and explain how this improves the procedure.

.....

[4]

Mia does the titration six times,	and her re	esults are s	shown in th	e table.		
	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5	Titrat
Burette reading at end (cm ³)	22.0	43.0	64.2	86.1	21.1	42.
Burette reading at start (cm ³)	0.0	22.0	43.0	64.2	0.0	21.
_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	22.0	21.0	21.2	21.9	21.1	21.
	e a mean	titration val	lue.			
Mia uses her results to calculat Evaluate Mia's results to sugge	e a mean	titration val	lue.			
Mia uses her results to calculat	e a mean	titration val	lue.			
Mia uses her results to calculat	e a mean	titration val	lue.	to calcula	te the mea	in.
Mia uses her results to calculat	e a mean	titration val	lue.	to calcula	te the mea	in.
Mia uses her results to calculat Evaluate Mia's results to sugge Mia calculates that 25.0 cm ³ of	e a mean rest which very which very the white oic acid is 6	titration values shou	lue.	to calcula	te the mea	in.
Mia uses her results to calculate Evaluate Mia's results to sugget when the sum of the s	the white bic acid is 6	titration values shou	lue. Ild be used	to calcula	te the mea	in.
Mia uses her results to calculate Evaluate Mia's results to sugget when the sum of the sum of the density of ethanoic acid is	the white pic acid is 6	titration values should be	lue. Ild be used	to calcula	te the mea	in.

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s must be clearly shown in the margin(s).					
•••••					
	l				

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials OCR has attempted to identify and contact all copyright holders whose work is used in this paper of avoid the issue of disclosure of answer-related in ormation to candidates all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet his is produced or each series of examinations and is reely available to download from our public website (www.ocr.org.uk) a ter the live examination series

OCR has unwittingly ailed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity

For queries or urther in ormation please contact he OCR Copyright eam he riangle Building Sha tesbury Road Cambridge CB2 8EA

OCR is part of the Cambridge Assessment Group Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge