Materials
For this paper you must have:
• a ruler.
You may use a calculator.

Instructions
• Use black ink or black ball-point pen.
• Fill in the boxes at the top of this page.
• Answer all questions.
• You must answer the questions in the spaces provided. Do not write outside the box
 around each page or on blank pages.
• Do all rough work in this book. Cross through any work you do not
 want to be marked.

Information
• The marks for questions are shown in brackets.
• The maximum mark for this paper is 60.
• You are expected to use a calculator where appropriate.
• You are reminded of the need for good English and clear presentation
 in your answers.
• Question 3(b) should be answered in continuous prose.
 In this question you will be marked on your ability to:
 – use good English
 – organise information clearly
 – use specialist vocabulary where appropriate.

Advice
• In all calculations, show clearly how you work out your answer.
1 (a) (i) Not all of the biomass of the bean plants is converted into the biomass of greenflies.

Calculate the biomass of bean plants that is **not** converted into the biomass of greenflies.

Use information from Figure 1.

Biomass = _____________________ arbitrary units
1 (a) (ii) For every 10 grams of biomass eaten by the hawks, more than 8 grams of biomass are lost.

Give one way in which the biomass eaten by hawks is lost from the food chain. [1 mark]

Tick (✓) one box.

Hawks reproduce

Hawks produce faeces

Hawks grow

Hawks feed on other birds

1 (b) When the bean plants grow they gain biomass.

Complete the sentences. [2 marks]

The bean plants gain biomass by the process of ____________________________ .

In this process, the bean plants make a carbohydrate called ________________________ .

Turn over for the next question
2 Charles Darwin developed the theory of evolution by natural selection in the 1800s.

2 (a) Describe the process of evolution by natural selection. [3 marks]

2 (b) In the 1870s, cartoons of Darwin looking like a monkey were published in magazines. The cartoons were published after Darwin wrote a book about his theory of evolution.

2 (b) (i) Suggest one reason why cartoons of Darwin looking like a monkey were drawn. [1 mark]

2 (b) (ii) Give two reasons why Darwin’s theory of evolution by natural selection was only gradually accepted. [2 marks]

6
3 The human body responds to changes in internal conditions and external conditions.

3 (a) The water and ion content of the body must be controlled.

Ions are lost from the body in different liquids from different organs.

3 (a) (i) Complete **Table 1** to show **two** ways ions are lost from the body.

[4 marks]

Table 1

<table>
<thead>
<tr>
<th>Liquid</th>
<th>Organ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 (a) (ii) How are the ions which are lost from the body replaced?

[1 mark]

Question 3 continues on the next page
3 (b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Reflexes allow humans to respond to stimuli (changes in the environment).

One example of a reflex is when a finger touches a hot kettle and the arm is pulled away.

Sense organs contain receptors that detect stimuli.

Effectors are muscles or glands which respond.

Figure 2 is a diagram of a simple reflex pathway.

Figure 2

Describe how a simple reflex works.

Your answer should include:
- one type of receptor and the stimulus that the receptor detects
- how information is passed from the receptor to the effector.

[6 marks]
Plants, animals and microorganisms are involved in the carbon cycle.

Describe how living plants are involved in the carbon cycle. [4 marks]

4
Plants and animals living in hot, dry habitats have adaptations to survive.

Figure 3 shows an acacia tree.

Figure 3

Distance above ground level in metres

Distance below ground level in metres

5 (a) (i) Describe the root system of the acacia tree, shown in **Figure 3**.

Suggest how the root system helps the acacia tree to survive in dry habitats.

[3 marks]

Question 5 continues on the next page
5 (a) (ii) Figure 4 shows one leaf from an acacia tree and one leaf from a tree that lives in a cool, moist habitat. The leaves are drawn to the same scale.

Figure 4

One leaf from an acacia tree living in a hot, dry habitat

One leaf from a tree living in a cool, moist habitat

Use information from Figure 4 to suggest how the leaf of the acacia tree helps the tree to survive in hot, dry habitats.

[2 marks]

5 (b) The branches of acacia trees have long, sharp thorns.

What is the advantage to the tree of having long, sharp thorns?

[1 mark]

5 (c) Most animals store fat in their bodies.

5 (c) (i) Suggest one reason why animals store fat. [1 mark]

5 (c) (ii) Figure 5 shows a camel and a llama.

Camels live in hot environments. Llamas live in cold environments.

Figure 5

Camel

Llama

Table 2 gives information about stored fat in a camel and in a llama.

Table 2

<table>
<thead>
<tr>
<th>Percentage of body mass which is stored fat</th>
<th>Part of the body where most fat is stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camel</td>
<td>21</td>
</tr>
<tr>
<td>Llama</td>
<td>20</td>
</tr>
</tbody>
</table>

Suggest why most of the fat is found in different parts of the body of the two animals. [2 marks]

Turn over
6 (a) Tuberculosis (TB) is an infectious disease caused by a bacterium.

A person can be vaccinated against TB.

The vaccine contains the TB bacterium.

6 (a) (i) Describe the difference between the bacteria in the vaccine and the bacteria that cause the disease.

[1 mark]

6 (a) (ii) Table 3 shows antibody production in a non-vaccinated person and a vaccinated person when infected with TB bacteria.

Table 3

<table>
<thead>
<tr>
<th></th>
<th>Number of antibodies produced</th>
<th>Speed of antibody production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-vaccinated person</td>
<td>Few</td>
<td>Slow</td>
</tr>
<tr>
<td>Vaccinated person</td>
<td>Many</td>
<td>Very fast</td>
</tr>
</tbody>
</table>

Explain the differences in antibody production shown in Table 3.

[2 marks]

6 (b) Bacteria may mutate and become resistant to an antibiotic.

Table 4 shows how the percentages of non-resistant and resistant strains in the population of bacteria change over time when an antibiotic is used.

<table>
<thead>
<tr>
<th>Number of generations of bacteria</th>
<th>Percentage (%) in population of bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-resistant strain</td>
</tr>
<tr>
<td>5</td>
<td>99</td>
</tr>
<tr>
<td>50</td>
<td>95</td>
</tr>
<tr>
<td>500</td>
<td>80</td>
</tr>
<tr>
<td>5 000</td>
<td>60</td>
</tr>
<tr>
<td>50 000</td>
<td>30</td>
</tr>
</tbody>
</table>

6 (b) (i) Why does the percentage of the resistant strain in the population of bacteria change?

6 (b) (ii) Suggest why antibiotics should **not** be used to treat some people who have sore throats.

Turn over →
Reproduction may be sexual or asexual.

Describe one advantage to a species of sexual reproduction rather than asexual reproduction.

Mitochondria contain genes. The genes control some of the reactions in respiration.

In a person with mitochondrial disease, genes in the mitochondria are faulty. The person may have muscle weakness, blindness and heart failure.

In human reproduction, an embryo will have mitochondria from the cytoplasm of the mother’s egg cell.

Scientists have developed a way of solving the problem of a child inheriting mitochondrial disease.

Figure 6 shows the process.

The cells involved come from three different people, A, B and C.
7 (b) (i) Describe the process shown in Figure 6.

Use your knowledge of sexual reproduction and adult cell cloning. [4 marks]

7 (b) (ii) Explain why the embryo formed from the process shown in Figure 6 will not have mitochondrial disease. [2 marks]

7 (b) (iii) Suggest one ethical objection to this process being used for reproduction in humans. [1 mark]

Turn over for the next question
Students investigated the sensitivity of plants to different stimuli.

The students:
- put cress seeds onto wire mesh above some water in a black plastic box which did not allow light to enter
- left the seeds to grow in darkness for 5 days
- poured out the water after the 5 days
- then put cotton wool soaked in water on top of the wire mesh
- left the seedlings for 2 more days.

Figure 7 and **Figure 8** show the results of the investigation.

8 (a) Shoots are sensitive to light and gravity.

What conclusions can you make about the growth of the seedling shoots in response to light and gravity from the results shown in **Figure 7**?

Explain why you made these conclusions.

[3 marks]
8 (b) One student said:

“Roots are sensitive to the stimuli of gravity and moisture.”

Explain which of these two stimuli is more important to the growth of roots.

Refer to the results shown in Figure 7 and Figure 8.

[2 marks]

Question 8 continues on the next page
In a different investigation students grew cress seeds in a transparent box. The students directed light from a lamp on to one side of the box.

Figure 9 shows the results after 7 days.

8 (c) (i) Explain what caused the seedling shoots to grow in the way shown in Figure 9.

[2 marks]

8 (c) (ii) What is the advantage to the cress seedlings of the response to light shown in Figure 9?

[2 marks]

END OF QUESTIONS
There are no questions printed on this page
There are no questions printed on this page