

A LEVEL Physics

PHA3/B3/X – Investigative and practical skills in AS Physics Mark Scheme

2450/2455 June 2015

Version 1: Final Mark Scheme

AQA^C PHYAB3: Practical and Investigative Skills in AS Physics

Section A Task 1				
1	(a) and (b)	readings:	I_a in range 780 mm to 820 mm and I_b in range 180 mm to 220 mm; both dimensions to nearest mm \checkmark I_a and I_b both to mA, both to 0.1 mA, or both to 0.01 mA in range 19(.00) mA to 21(.00) mA; V_a and V_b both to 0.1 V or both to 0.01 V \checkmark	2
1	(c)	method and	$r_{\rm a}$ and $r_{\rm b}$ calculated from $\frac{pd}{current \times length} \checkmark$ (method mark only; don't penalise for POT error)	1
		result:	$r_{\rm a}$ in range 140 Ω m ⁻¹ to 170 Ω m ⁻¹ \checkmark (allow other units as long as the value given is appropriate, eg 1.40 Ω cm ⁻¹ ; condone Ω withhold mark for AE in calculation of $r_{\rm b}$) max 4sf: note that this is the only part of Section A where excessive sf are penalised	1
1	(d)	explanation:	(percentage uncertainty in $r_a < r_b$ because) percentage uncertainty in $r = \underline{sum}$ of the percentage uncertainties in length, pd and current $\frac{1}{\sqrt{1-1}}$ current: l_a is about the <u>same</u> as l_b (both about 20 mA) so <u>percentage</u> uncertainty <u>in current</u> l_a is <u>same</u> as percentage uncertainty in current $l_b \frac{1}{2}$ length of wire: l_a is <u>greater</u> than l_b so <u>percentage</u> uncertainty <u>in length</u> l_a is <u>less</u> [smaller] (by about a factor of 4) than the percentage uncertainty in length $l_b \frac{1}{3}$ pd across wire: V_a is <u>greater</u> than V_b so <u>percentage</u> uncertainty in <u>pd across wire</u> V_a is <u>less</u> [smaller] (by about a factor of 4) than the percentage uncertainty in $V_b \frac{1}{4}$	4 MAX 3

2 (a) $\begin{array}{c} \text{data:} & \text{are plotted} \\ \text{range and} \\ \text{precision} \end{array}$ $\begin{array}{c} \text{minimum } I_1 \text{ value} \leq 20 \text{ mA}, \text{maximum } I_2 \text{ value} \geq 75 \text{ mA}; \\ I \text{ values all to mA, all to 0.1 mA or all to 0.01 mA}; \\ V \text{ values all to 0.1 V or all to 0.01 V } \checkmark \\ \text{(if precision is inconsistent here and in question 1 do not deduct for a second time)} \end{array}$	2
2(b)graph:suitable vertical scale: points should cover at least half the grid vertically, ie at least 6 major grid squares (withhold mark for use of a difficult or non-linear scale, wrongly-marked false origin etc) \checkmark 2(b)graph:10 points plotted correctly, (minimum of) 5 on each line (check at least one on each line, including any anomalous); two ruled best fit lines of positive gradient \checkmark (maximum acceptable deviation from best fit lines is 2 mm, adjust criteria if graph is poorly scaled; withhold mark if line(s) is/are poorly marked)	2
2 (c)(i) method for R_X : (c)(i) method f	1
result for R_X : result for R_X in range 78 Ω to 86 $\Omega_2 \checkmark$	1
gradients: hypotenuse of each gradient triangle $\ge 100 \text{ mm}_{1} \checkmark$	1
2 (c)(ii) evidence of valid attempt at calculation of G_2 , based on the gradient of the l_2 , V_2 plot [direct calculation of $(G_2)^{-1}$ is acceptable]; $R_{circuit}$, resistance of (parallel) circuit, determined from $(G_2)^{-1}$; R_Y , resistance of Y, determined from $\left(\frac{1}{R_{circuit}} - \frac{1}{R_X}\right)^{-1}$ $[(G_2 - G_1)^{-1}]_2 \checkmark$	1
result for $R_{\rm Y}$: result for $R_{\rm Y}$ in range 200 Ω to 240 $\Omega_3 \checkmark$ (unit required for either $R_{\rm X}$ or $R_{\rm Y}$; for POT error here and in (c)(i), eg $R_{\rm X}$ and $R_{\rm Y}$ results in range but both × 10 ⁻³ and not labelled in k Ω , only deduct 1 mark)	1
	16

AQA

Section A Task 2

1	(a)	explanation:	line up plumb line with loop B; move loop T until this is lined up with plumb line \checkmark	1	
1	(b)/(c)	tabulation:	m /g y /mm \checkmark full credit for valid alternative units for m and y	1	
		results:	9 sets of <i>m</i> and $y \checkmark \checkmark$ deduct 1 mark for each missing set, if <i>m</i> is not in the left-hand column of a table with data arranged in rows; deduct this mark if the data is not recorded in a single coherent table, if there is no evidence that <u>mean</u> <i>y</i> values have been obtained from repeated readings, eg loading and unloading (condone no repeat for <i>m</i> = 900 g), additional mass recorded for <i>m</i> (ie values recorded for <i>m</i> = 0 to <i>m</i> = 800 g) maximum deduction 2 marks; there is no credit for false or invented data	2	
		significant figures:	all y recorded to the nearest mm; if m values recorded in kg these must be 3 sf \checkmark	1	
1	(d)	axes:	marked <i>y</i> /mm (vertical) and <i>m</i> /g (horizontal) $\checkmark \checkmark$ deduct ½ for each missing label or separator, rounding down; no mark if axes are reversed either or both marks may be lost if the interval between the numerical values is marked with a frequency of > 5 cm	2	
		scales:	points should cover at least half the grid horizontally \checkmark <u>and</u> half the grid vertically \checkmark (if necessary, a false origin should be used to meet these criteria; either or both marks may be lost for use of a difficult or non-linear scale)	2	
		points:	all tabulated points plotted correctly (check at least three including one from each straight-line section and any anomalous points); 8 or 9 (tabulated and plotted) $\checkmark \checkmark \checkmark$ [7 $\checkmark \checkmark$, 6 \checkmark] 1 mark is deducted for each tabulated point that has not been plotted for any plotted point for which the data has not been tabulated for every point > 1 mm from correct position if any point is poorly marked; no credit for false data	3	
		line:	<u>ruled</u> best fit line of positive gradient from $m = 100$ g to $m = 300$ g and a <u>ruled</u> section of <u>lower</u> positive gradient from $m = 500$ g; these lines must meet at an elbow, otherwise they must be joined by smooth curve with no inflection \checkmark maximum acceptable deviation from best fit line is 2 mm, adjust criteria if graph is poorly scaled; withhold mark if line is poorly marked	1	
		quality:	8 points to \pm 2mm of a suitable line as described above; if a curve is drawn use a ruler to judge Q from the plotted points, adjusting for any mis-plots; adjust \pm 2mm criterion if the graph is poorly scaled \checkmark	1	

Section B			
1	(a)(i) and (a)(ii)	valid attempt at gradient calculation or $_{12}\checkmark = 0$ (if a curve is drawn in error a tangent or normal should be drawn to form the hypotenuse of the triangle) correct transfer of <i>y</i> - and <i>x</i> -step data between graph and both calculations $_{1}\checkmark$ (mark is withheld if points used to determine either step > 1 mm from correct position on grid; if tabulated points are used these must lie on the line) at least one gradient calculation has <i>y</i> -step and <i>x</i> -step both at least 8 semi- major grid squares [5 by 13 or 13 by 5] $_{2}\checkmark$ (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8 × 8 criteria)	2
1	(a)(iii)	$\frac{G_1}{G_2}$, no unit, in range 2.37 to 2.63 or 2.5 $\checkmark \checkmark$ [2.25 to 2.75 or 2.3, 2.4, 2.6 or 2.7 \checkmark] max 4sf answer: note that this is the only part of Section B where excessive sf are penalised	2
1	(b)(i)	sensible comment about the condition of the central spring at the point when G_1 changes to G_2 , eg (the thread becomes tight and) the central spring is placed under tension [is extended / is stretched] $_1 \checkmark$	
		sensible comment about how the condition of the central spring affects the characteristics of the system at the point when G_1 changes to G_2 , eg when the central spring comes under tension the system is harder to stretch [stiffness of system is increased / the change in <i>y</i> per 100 g [rate of change of <i>y</i>] is decreased] $_2$	MAX 2
		gradient of graph $\propto \frac{1}{\text{stiffness }_{3}}$ (reject gradient = $\frac{1}{\text{stiffness}}$)	
1	(b)(ii)	<u>extrapolate</u> [extend the line] and read off the <i>y</i> [vertical] intercept \checkmark (insist on 'extrapolate/extend' and ' <i>y</i> / vertical intercept or value where line meets <i>y</i> axis'; give full credit for a clear annotated diagram showing the line extrapolated to meet the axis and the intercept labelled or for algebraic approach based on intercept = $y - G_1 x$ where <i>y</i> and <i>x</i> are coordinates on the line where the gradient = G_1)	1
1	(c)	candidate's graph will be linear [straight line/no change in gradient] of gradient G_1 [same gradient as when $m \le 300$ g] \checkmark	1

2	(a)(i)	when S is closed the resistors R1 and R2 are in parallel $_{1}$ \checkmark (I_{2} is greater than I_{1} because) when S is closed) <u>circuit</u> [total / combined] resistance is less [resistance of (combination of) R1 and R2 together is less than the resistance of R1 (by itself)] $_{2}$ \checkmark	d] s <u>less</u>	
2	(a)(ii)	idea that (battery) pd [voltage] is shared between the <u>variable resistor</u> and fixed resistor(s) R1 (and R2) [across voltmeter] $_{3}$		
		$I \times R$ argument pd across <u>variable resistor</u> = current × resistance <u>of variable resistor</u> $_4 \checkmark$	5 MAX 3	
		(V_1 is greater than V_2 because) when current is greater, pd across <u>variable</u> resistor is greater (so pd across parallel part [voltmeter reading] is less) $_5 \checkmark$		
		[potential divider argument allowed only when $_{3}\checkmark$ has been earned (V_2 is less than V_1 because) the <u>variable resistor</u> has a greater share of the available pd when the introduction of R2 reduces the fixed resistance of the circuit $_{45}\checkmark$]		
2	(b)(i)	mean correctly calculated as 68.9(0) (Ω) \checkmark (reject 2sf 69 but allow > 4 sf; do not insist on seeing working)	1	
	(b)(ii)	working to show uncertainty = half range, result to <u>same dp</u> as mean; for mean = 68.90, uncertainty = 2.95 (Ω) [for mean = 68.9, uncertainty = 3.0] \checkmark (reject 1 sf 3 unless 69 given in (b)(i))		
	(b)(iii)	statement (or correct working) to show the resistance at limits of the manufacturer's tolerance are 71.4 Ω and/or 64.6) $\Omega_1 \checkmark$ or $_{12} \checkmark = 0$		
		(from (b)(i) and (b)(ii)) statement (or correct working) to show the resistance (as high as) 71.9 Ω [as low as 65.9 Ω or sum / difference of answers to (b)(i) and (b)(ii)]; a logically consistent statement is also required about whether the resistor is outside the range (expect 'outside' but allow 'yes') $_{2}$	2	

3	(a)(i)	position of cross-wires recorded between 94.0 to 110.0 mm, to 0.1 mm \checkmark	1
	(a)(ii)	<i>d</i> in range 12.4 to 12.8 mm \checkmark s in range 6.0 to 6.8 mm (reject 6 mm) \checkmark the correct unit must appear with at least one of the answers in (a)(i) and (a)(ii), or withhold one mark here	2
3	(b)	number of washers found from $\frac{\pi(125+d)}{d}$ (if <i>d</i> is in mm) \checkmark 34 [ecf for false <i>d</i> but must be rounded <u>down</u> to an integer] \checkmark $\left[\frac{\pi(125+d/2)}{d}\right]$ leading to 32 is worth 1 MAX]	2
3	(c)(i)	 <u>thickness</u> of washer measured with a <u>micrometer</u> [screw gauge, digital vernier callipers: allow (analogue) vernier calliper if the precaution is measure <u>thickness</u> of several washers and find average] ✓ repeat reading <u>in different places</u> and divide by number / find average ✓ [measure multiple thicknesses and divide by number / find average or check for zero error before making measurements or close jaws of micrometer using the <u>ratchet</u> / do not over-tighten the micrometer ✓] (ignore reference to checking calibration) <u>mass</u> of the washer measured (ignored 'weighed with') with a <u>balance</u> (reject 	2
		 'scales' (digital or otherwise)) ✓ measure (combined) mass of several washers and divide by number of washers / calculate average (mass) [measure mass of <u>different</u> washers and calculate average] ✓ (ecf for 'scales' but no ecf for 'weight') [check for zero error before making measurement / ensure that balance has been tared [zeroed] or ensure that balance is on a horizontal surface ✓] (ignore reference to checking calibration) 	2
3	(c)(ii)	description of correct algebraic method to determine <u>how</u> the volume of the washer is obtained, eg $\frac{\pi}{4} \times (d^2 - s^2) \times$ thickness; if numerical values are suggested for <i>d</i> and <i>s</i> allow ecf from part (a) (reject bland 'cross-sectional area × thickness' or $\frac{\pi}{4} \times (d - s)^2 \times$ thickness); density = $\frac{mass}{volume} \checkmark$	1