

A-LEVEL PHYSICS A

PHA5C – Applied Physics Mark scheme

2450 June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Question	Answers	Additional Comments/Guidance	Mark	ID details
1 a	$\frac{3.5}{(2\pi \times 0.088)} = 6.3 \text{ rev}$ $6.3 \times 2\pi = 39.8 \text{ rad} \text{ or } 40 \text{ rad } \text{ J}$ OR $\frac{3.5}{0.088} = 39.8 \text{ or } 40 \text{ rad } \text{ J}$	If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion.	1	
1 b	$\omega = v/r = 2.2/0.088 = 25 \text{ rad s}^{-1} \text{ J}$		1	
1 c i	$E = \frac{1}{2}I\omega^{2} + \frac{1}{2}mv^{2} + mgh$ $= (0.5 \times 7.4 \times 25^{2})$ $+ (0.5 \times 85 \times 2.2^{2})$ $+ (85 \times 9.81 \times 3.5)$ $= 2310 \text{ J}$ $+ 206 \text{ J}$ $+ 2920 \text{ J}$ $(= 5440 \text{ J or } 5400 \text{ J})$	CE from 1b $\frac{1}{2} I \omega^2 + \frac{1}{2} m v^2 = 2310 + 210 = 2520 \text{ J}$ $\frac{1}{2} I \omega^2 + mgh = 2310 + 2920 = 5230 \text{ J}$ $\frac{1}{2} m v^2 + mgh = 210 + 2920 = 3130 \text{ J}$ Each of these is worth 2 marks	3	
1 c ii	Work done against friction = $T\theta$ = $5.2 \times 40 = 210 \text{J}$ J Total work done = $W = 5400 + 210$ = 5600J J 2 sig fig J	CE if used their answer to 1 c i rather than 5400J Accept 5700 J (using 5440 J) Sig fig mark is an independent mark	3	

1 d	Time of travel = distance /average speed = 3.5/1.1 = 3.2 s \(\sqrt{J} \)	CE from 1c ii	2	
	$P_{\text{ave}} = \underline{5600} = 1750 \text{ W}$ 3.2 $P_{\text{max}} = P_{\text{ave}} \times 2 = 3500 \text{ W}$	1780 W if 5650 J used		
	OR accelerating torque = $T = W/\theta$ = 5600/40 = 140 N m J P = $T \omega_{\text{max}}$ = 140× 25 = 3500 W J			

-	ation on page 4 and apply a 'best-fit' appl	QWC) as well as the standard of the scientific	
hould also refer to the informa	ation on page 4 and apply a 'best-fit' appl	•	
Level 1 (1–2 marks)		<u> </u>	
	Level 2 (3-4 marks)	Level 3 (5–6 marks)	
e information conveyed by the swer is poorly organised and may be relevant or coherent. There is e correct use of specialist cabulary. e candidate shows little	be less well organized and not fully coherent. There is less use of specialist vocabulary or specialist vocabulary may be used or spelled incorrectly. The form and style of writing is	The information conveyed by the answer is clearly organized, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answe the question. The candidate can explain the need for a low M of I for high acceleration by arguing coherently in terms of	
derstanding of how M of I affects celeration, probably confusing ergy, momentum or torque, or ating this part of the question rsorily. They will probably relate M I to mass and radius, but not cover be cects of mass, and distribution of lass around the axis, and may not late their answers well to the latext of the question.	Some attempt may be made to link energy, torque or momentum to acceleration, but understanding will be limited. They will link M of I to mass and radius ² but may not cover all aspects of mass, and distribution of mass around the axis. They are likely to be able to suggest means of reducing M of I.	acceleration by arguing coherently in terms of energy or torque or momentum, or a combination of these They will relate their answer to cycles, and possibly specisports. The candidate will show how $I = mr^2$ influences wheel defor low inertia, covering mass, and distribution of mass around the axis. They may also discuss optimizing low inertia with wheel strength or other design constraints. The answer includes at least one of the first 3 answer points below and any 5 others.	
	be relevant or coherent. There is a correct use of specialist abulary. It candidate shows little derstanding of how M of I affects eleration, probably confusing argy, momentum or torque, or ating this part of the question sorily. They will probably relate M to mass and radius, but not cover elects of mass, and distribution of as around the axis, and may not atte their answers well to the text of the question.	There is less use of specialist vocabulary or specialist vocabulary or specialist vocabulary may be used or spelled incorrectly. The form and style of writing is less appropriate. Some attempt may be made to link energy, torque or momentum to acceleration, but vocabulary may be made to link energy, torque or momentum to acceleration, but vocabulary may be used or spelled incorrectly. The form and style of writing is less appropriate. Some attempt may be made to link energy, torque or momentum to acceleration, but vocabulary may be used or spelled incorrectly. The form and style of writing is less appropriate. Some attempt may be used or spelled incorrectly. The form and style of writing is less appropriate. Some attempt may be made to link energy, torque or momentum to acceleration, but vocabulary may be used or spelled incorrectly. The form and style of writing is less appropriate. Some attempt may be made to link energy, torque or momentum to acceleration of mass and radius, but of the question of aspects of mass, and distribution of mass around the axis. They are likely to be able to suggest means of reducing M of I. At least any 4 of the answer points below are covered,	

examples of the points made in the response	extra information				
• Kinetic energy = $\frac{1}{2}I\omega^2$ so low I gives low stored energy, so less power needed to bring wheels (hence cycle) up to speed					
Torque: $T = I\alpha$ so large torques needed (high push on pedals) unless I is small OR $T = I\alpha$ so for given torque low I means high acceleration.					
• Momentum: $T = \Delta (I \omega)$ /time, so unless I small large time needed to bring to given angular speed for given torque	Must relate $I\omega$ to torque				
• $I = \Sigma mr^2$ explained AND/OR I depends on how mass is distributed					
■ So for low <i>I</i> , low <i>m</i> / low density materials needed	Accept 'lightweight' for 'low density'				
of high strength e.g. carbon fibre	Either or both of high strength and named low density material				
 For low I, small radius helps, (but limited by design needs) 	e.g. gearing or pedalling problems				
 So low I if most of mass is near axle, and little mass far from axle 					
 Hence use narrow tyres, low mass rims and tyres, spoke tensioners at hub etc 	w mass rims and tyres, spoke Do not credit answers in terms of friction at the bearings.				
 clearly relates linear acceleration to angular acceleration (a = rα) 	Even though this last point is not on the specification				

Question	n Answers			Add	Additional Comments/Guidance		Mark	ID details
3 a i	Clear statement that for isothermal pV =constant or $p_1V_1 = p_2V_2$ J Applies this to any 2 points on the curve AB J e.g. $1.0 \times 10^5 \times 1.2 \times 10^{-3} = 4.8 \times 10^5 \times 0.25 \times 10^{-3}$ $120 = 120$				ted from gra	If to intermediate points of the e.g. $V = 0.39 \times 10^{-3}$, p	2	
3 a ii	$W = p \Delta v$ = 4.8 x 10 ⁵ × (0.39 - = 67 J J	– 0.25) × 10 ⁻³					1	
3 b	$\begin{array}{c} \text{process A} \rightarrow \text{B} \\ \text{process B} \rightarrow \text{C} \\ \text{process C} \rightarrow \text{A} \\ \text{whole cycle} \end{array}$	Q/J -188 +235 0 +47	W/J -188 (+)67 +168 +47	Δ <i>U</i> /J 0 (+)168 -168 0	J J J	Any horiz line correct up to max 3. Give CE in B → C if ans to 3 a ii used for W If no sign take as +ve.	max 3	

3 c	$\eta_{\text{overall}} = 47/235 = 0.20 \text{ or } 20\%$		1	
3 d	Isothermal process would require engine to run very slowly/ be made of material of high heat conductivity \(\mathcal{J} \) Adiabatic process has to occur very rapidly / require perfectly insulating container / has no heat transfer \(\mathcal{J} \) Very difficult to meet both requirements in the same device. \(\mathcal{J} \) Very difficult to arrange for heating to stop exactly in the right place (C) so that at end of expansion the curve meets the isothermal at A. \(\mathcal{J} \)	Do not credit bald statement to effect adiabatic/isothermal process not possible - must give reason. Ignore mention of valves opening/closing, rounded corners, friction, induction /exhaust strokes.	max 2	
Total		<u> </u>	9	

Question	Answers	Additional Comments/Guidance	Mark	ID details
4 a	The ratio energy given to hot space/area to be heated work input	It must be clear that Q_{IN} is energy delivered to the area to be heated/hot space. Do not accept 'heat input' or any wording that is vague.	1	
4 b i	$ \eta_{\text{max}} = \frac{1600 - 290}{1600} = 0.82/82\% $ $ 1600 $ input power = output power = 80 = 98 kW efficiency 0.82 fuel flow rate × CV = 98 kW fuel flow rate = 98000/(49 × 10 ⁶) = 2.0 × 10 ⁻³ kg s ⁻¹ J OR 7.2 J kg h ⁻¹ J	fuel flow rate = $80000/(49 \times 10^6)$ = 1.6×10^{-3} J	4	
4 b ii	$COP_{HP} = Q_2$ W So $Q_2 = 16 \times 2.6 = 41.6 \text{ or } 42 \text{ kW}$ J $Q_1 = 98 - 80 = 18 \text{ kW}$ J Total $Q_1 + Q_2 = 60 \text{ kW}$ J	CE for Q_1 if incorrect input power from b i is used, but NOT 80 -16 or 80 - 80	3	
4 b iii	Heat pump delivers more heat energy than the electrical energy input. J		2	

Reason: it adds energy from external source	Accept $Q_{IN} = W + Q_{OUT}$ if explained correctly	
to electrical energy input. ✓	e.g. by diagram.	