ADVANCED General Certificate of Education 2022

Physics

Assessment Unit A2 3B
assessing
Practical Techniques
and Data Analysis
[APH32]
APH32
WEDNESDAY 11 MAY, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in black ink only. Do not write with a gel pen.
Answer all four questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 50 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question.
You may use an electronic calculator.

1 Hubble＇s law states that the recessional velocity of distant galaxies is directly proportional to the distance of the galaxy from the observer．

A plot of the recessional velocity and its distance from Earth is shown in Fig．1．1．

The age of the universe can be determined by calculating the reciprocal of the gradient.
(a) The equation for the straight line of best fit is given on the graph. Use this to calculate the age of the universe and state the unit.

$$
\begin{aligned}
& \text { age }= \\
& \text { unit }= \\
& \hline
\end{aligned}
$$

(b) (i) On Fig. 1.1, draw an extreme fit line that would allow you to estimate the maximum age of the universe.
(ii) Use this extreme fit line to calculate the maximum age of the universe.

Maximum age = \qquad

2 A student is provided with a tuning fork which has a frequency stated to be $440 \mathrm{~Hz} \pm 5 \%$. The student uses a cathode ray oscilloscope to determine the precise frequency of the tuning fork.
(a) (i) State the name of the other piece of equipment the student needs to allow the oscilloscope to display a sound wave.
\qquad
(ii) Fig. 2.1 shows the trace on the screen of the cathode ray oscilloscope immediately after the tuning fork has been struck. Which of the time-base settings shown on Fig. 2.1 must the student be using?
time-base setting = \qquad
(iii) The student has initially set the Y -sensitivity to $1 \mathrm{Vcm}^{-1}$. State the value for the Y -sensitivity that the student should select to ensure the full extent of the wave remains on the screen but is as large as possible.

Y-sensitivity setting = \qquad

Fig. 2.1
(b) Fig. 2.2 shows the display of the oscilloscope screen after the student has adjusted the Y -sensitivity setting. The time-base setting is unchanged.

Fig 2.2
(i) Use Fig. 2.2 to determine an accurate value for the time period of the wave.
\qquad s
(ii) State whether the frequency of the tuning fork falls within the range stated by the manufacturer. Show calculations to support your conclusion.
\qquad
\qquad
\qquad

3 Warm water was poured into an empty beaker submerged in an ice bath. The temperature T of the water in the beaker was then measured by a student every 2 minutes as the temperature of the water decreased. The results the student recorded are shown in Table 3.1.

Table 3.1

Time $/ \mathbf{s}$	$\mathbf{T} /{ }^{\circ} \mathbf{C}$	$\ln \left(\mathbf{T} /{ }^{\circ} \mathbf{C}\right)$
120	64	
240	50	
360	39	
480	30	
600	23	
720	18	

The temperature of the water T at time t is given by Equation 3.1.

$$
T=T_{o} e^{-t / k} \quad \text { Equation } 3.1
$$

where:
T_{0} is the initial temperature of the water in the beaker k is a constant
(a) (i) Show that a graph of $\ln (\mathrm{T})$ against t is a straight line.
(ii) State how the value for the constant k could be determined from the graph.
\qquad
\qquad
(b) (i) Calculate the values for $\ln \left(\mathrm{T} /{ }^{\circ} \mathrm{C}\right)$ and insert them into the final column of Table 3.1. Record these values to 2 decimal places.
(ii) Draw a graph of In T against t on the grid of Fig. 3.1. Choose suitable scales for the axes, plot the points and draw the best fit line for the points.

(iii) Use your graph to find the initial temperature T_{0} of the water.

$$
\mathrm{T}_{0}=
$$

\qquad ${ }^{\circ} \mathrm{C}$

4 A student wishes to determine the resistivity of a metal wire whose length is greater than 50 cm and diameter is less than 1 cm .
(a) The student measured the potential difference across and the current through the wire using digital meters. The circuit is shown in Fig. 4.1.

Fig. 4.1
(i) State the names of the measuring instruments that need to be placed in position 1 and position 2.

Position 1 \qquad
Position 2
(ii) Explain why it is important to include a switch in this circuit.
\qquad
\qquad
\qquad
\qquad
(iii) State which instrument should be used to measure the following quantities and how, in addition to repeating and averaging, the instrument should be used for each reading to ensure it is as accurate as possible.

Quantity: Length of wire
Instrument: \qquad
How to gain an accurate value:
\qquad
\qquad
\qquad
\qquad
Quantity: Diameter
Instrument: \qquad
How to gain an accurate value:
\qquad
\qquad
\qquad
\qquad
(b) The resistance R of a wire of cross-section area A is given by Equation 4.1.

$$
\mathrm{R}=\rho \frac{\mathrm{L}}{\mathrm{~A}} \quad \text { Equation } 4.1
$$

(i) Using Equation 4.1 as a starting point, show that the resistivity ρ is given by Equation 4.2.

$$
\rho=\frac{\pi V d^{2}}{4 \mathrm{LI}} \quad \text { Equation } 4.2
$$

where V is voltage, I is current, L is length and d is diameter.
(ii) The readings the student obtained are given in Table 4.1. State the absolute uncertainty and percentage uncertainty in each of the readings.

Table 4.1

Quantity	Reading	Absolute uncertainty	Percentage uncertainty
Voltage	0.41 V		
Current	1.06 A		
Length	91.2 cm		
Diameter	2.64 mm		

(iii) Calculate the resistivity of the metal and the percentage uncertainty in the quantity.
$\rho=$ \qquad $\Omega \mathrm{m} \pm$ \qquad \%
(iv) Using your answer to part (iii), calculate the absolute uncertainty in the resistivity.

Absolute uncertainty = \qquad $\Omega \mathrm{m}$

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

