

Centre Number					
Can	didat	e Nu	mber		
Can	didat	e Nu	mber		

General Certificate of Secondary Education 2019

GCSE Chemistry

Unit 2

Foundation Tier

[GCM21]

GCM21

WEDNESDAY 12 JUNE, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all six** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 80.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 3(d).

A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

1		n is e	extracted from its ore in the Blast Furnace. The extraction involves redox is.
	(a)	(i)	Name the ore from which iron is extracted in the Blast Furnace.
			[1]
		(ii)	Apart from iron ore, name one other substance added to the Blast Furnace. [1]
	(b)	(i)	Name the reducing agent in the Blast Furnace and write balanced symbol
			equations to show the formation of this compound.
			Name
			Equations
			[6]
		(ii)	Balance the symbol equation below for the production of iron in the Blast Furnace.
			$Fe_2O_3 + CO \rightarrow Fe + CO_2$ [1]

g Learning

Rewarding

g Learning

g Learning

g Learning

Rewardin,

Rewarding g Learning

Rewarding Description

Rewarding g Learning

Rewarding

Payrating

Par sewaran

Rewarding
g Learning
Rewarding
g Learning

Rewarding g Learning

Rewarding g Learning

Rewarding g Learning

Rewarding g Learning

Rewarding

g Learning

Rewarding

Hevarding
g Learning
G G
Revarding
g Learning
g Learning
g Learning
g Learning
g Learning

Rewarding g Learning

G.

Rewardin.

g Learning

Rewarding

g Learning

earning.

	(111)	Explain, in terms of oxygen content, why the reaction in (b)(ii) is a redox reaction.	
			_
			_
			_
			5]
830.03 R		[Turn c	V

Rewarding L

Rewarding L.

Rewarding L

Rewarding L

Learning

Rewarding L

DED Learning

Rewarding L

Learning

Rewarding L

Rewarding L

Rewarding L

Rewarding L

DED Learning

DE Learning
Rewarding L

Rewarding L

Rewarding L.

Carring

Learning

Rewarding L.

Rewarding L

A Learning

Rewarding L

A Learning

Rewarding L.

Learning Rewarding L

Rewarding L.

Learning

Rewarding L.

E

2 Ammonia is manufactured in the Haber Process. An iron catalyst is used in this process to increase the rate of the reaction.

The balanced symbol equation for the reversible reaction in the Haber Process is:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

(a) (i) Explain how a catalyst increases the rate of a chemical reaction.

[2]

96)

93

90

(ii) State two conditions which can be altered to change the direction of a reversible reaction.

1. _____

2. ______ [2]

(b) A dynamic equilibrium is achieved in the reaction between nitrogen and hydrogen in the Haber Process.

Complete the following table by placing a tick () in the correct column.

Statement	True	False
Dynamic equilibrium occurs in a closed system.		
Dynamic equilibrium occurs when the rates of the forward and reverse reactions are equal.		
Dynamic equilibrium occurs when the rate of the forward reaction is greater than the rate of the reverse reaction.		
At equilibrium the amount of reactants is always equal to the amount of products.		
At equilibrium the amounts of reactants and products remain constant.		

[5]

[Turn over

(c)	In t	ne Haber Process the forward reaction is exothermic.
		$N_2(g) + 3H_2(g) \implies 2NH_3(g)$
	(i)	Explain, in terms of bonds, why this reaction is exothermic.

g Learning

Rewarding

g Learning

g Learning

g Learning

Rewarding
g Learning
Rewarding
g Learning
g Learning

Rewarding g Learning

Rewarding

Garding

Garding

Garding

Garding

Garding

Rewarding g Learning

Rewarding Rewardin, DEJ g Learning Rewarding g Learning g Learning <u>G</u> Rewardin, Hewarding Dearning a Learning G. g Learning Rewarding DEJ g Learning

Rewarding g Learning

Rewarding

10 g Learning

Rewarding g Learning

C.

[3]

(ii) The covalent bonds which are present in the reactants and products are shown below the equation. Use these bonds and the bond energies given in the table to calculate the energy change for the forward reaction.

Bond	Bond Energy/kJ
N≡N	916
Н—Н	436
N—H	386

(iii) Using your answer to (c)(ii) suggest a value for the energy change of the reverse reaction.

______[1]

[Turn over

Alk	Alkenes are hydrocarbons which may be produced by cracking.						
(a)	(i)	State the meaning of the term hydrocarbon.					
			[1]				
	(ii)	Write the general formula of the alkenes.	_ [1				
(b)		te a balanced symbol equation for the complete combustion of $\mathrm{C_4H_8}$ formion dioxide and water.					
(c)		pene may be produced from the cracking of the hydrocarbon $\mathrm{C_7H_{16}}$. One er product is formed in this reaction.	- L -,				
	(i)	Write a balanced symbol equation for the cracking of C ₇ H ₁₆ .	[2				
	(ii)	Name the other product formed in this reaction.	- [<u>-</u>				
	(iii)	Suggest why high temperatures are required for cracking reactions.					
			[1				

g Learning

Rewarding

g Learning

g Learning

g Learning

Revarding

y Learning

Reveateding Planning Planning

Revarding
Page
Provided Provid

Rewarding g Learning

Rewarding

Popularing

g Learning

Rewarding

g Learning

DE g Learning

(d)	Identify the functional group present in alkenes and describe a chemical test for this functional group.
	Write a balanced symbol equation for the chemical reaction which occurs when ethene is tested in this way.
	In this question you will be assessed on your written communication skills including the use of specialist terms.
	[6]
11830.03 R	[Turn over

Learning

Rewarding L

Rewarding
Learning

E

Learning

DED Learning

DED Learning

Rewarding L

Rewarding Learning

Learning
Rewarding L

DED I Learning

DED Learning

GE Bewarding L

Rewarding L.

Learning

Rewarding L

Rewarding L

Rewarding L.

Learning

Rewarding L.

93

g Learning

Rewarding

Bell

g Learning

newardin Dan g Learnin-

Rewarding

g Learning

DE learning

Rewarding DED g Learning

Aewarding
g Learning
g Learning
g Learning
g g Learning
g g Learning
g g Learning
g g Learning

Rewarding

Rewarding Department

Œ.

Rewarding DED g Learning

Rewarding g Learning

- 4 Calcium nitrate and calcium chloride are compounds often used in commercial treatments for garden plants.
 - (a) Calcium nitrate may be formed from the reaction of nitric acid with calcium hydroxide solution. An experiment was carried out during which nitric acid was slowly added from a burette to 25.0 cm³ of calcium hydroxide solution in a conical flask.
 - (i) An indicator was added to the conical flask to show when the reaction was complete. Name a suitable indicator which could have been used in this experiment.

______[1]

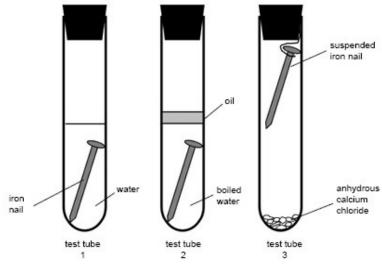
(ii) Name a piece of apparatus which was used to accurately measure $25.0\,\mathrm{cm^3}$ of calcium hydroxide solution.

______[1]

(iii) The balanced symbol equation for the reaction is:

$$\mathrm{Ca(OH)}_2 + \mathrm{2HNO}_3 \rightarrow \mathrm{Ca(NO}_3)_2 + \mathrm{2H}_2\mathrm{O}$$

Calculate the atom economy when calcium nitrate is made using this reaction.


Show your working out.

Atom economy = ______ % [3]

[Turn over

(b) Anhydrous calcium chloride is used in an experiment to investigate rusting as shown below. An iron nail is placed in three different test tubes (1, 2, and 3) under different conditions. The test tubes were left for one week.

© Chief Examiner / CCEA

g Learning

Rewardin

g Learning

)

g Learning

)

93

93

ewardin.

)

PE

20

)

20

93

93

)

93

g Learning

Rewarding g Learning

DE glacer

(i)	In which test tube(s) would rusting have occurred after one week?	
		_ [1]

		F41
		[1]

(iii)	What is	the	purpose	of the	anhydrous	calcium	chloride i	n test	tube	3?

- 4-
111

(iv) Describe the appearance of rust.	[2]
(v) What is the chemical name for rust?	[1]
(vi) State one method of preventing the formation of rust.	
	[1]

[Turn over

11830.03**R**

Rewarding L.

Rewarding L

)

Learning

DED Learning

Learning

Rewarding L

Rewarding L

Rewarding L.

Learning

GE Bewarding L

Rewarding L.

Rewarding L

Hewarding DED

Rewarding L

PE)

(a)	Wh	at is meant by the term electrolysis?	
			_ [
(b)		e apparatus below is used to carry out the electrolysis of molten lead(II) mide.	
		lamp + - battery	
		positive electrode negative electrode	
		pipeclay triangle crucible containing molten lead(II) bromide	
		heat heat heat	
		© Chief Examiner / CCEA	
	(i)	Name the material used to make the electrodes in this electrolysis.	
			_ [
	(ii)	State two reasons why this material is used to make the electrodes.	
		1	
		2	
		2	

g Learning

G:
Rewardin

g Learning

Hewarding g Learning

Rewarding
g Learning
Rewarding
g Learning
g Learning

Rewarding g Learning

DED IN LEASE OF THE PARTY OF TH Hewarding DED g Learning Rewarding g Learning Rewarding Rewarding g Learning Hewardin, g Learning Rewardin Hewardin, G: Rewardin Dep

Revarding
Description
Providing
Prov

Rewarding g Learning

Rewarding

10 g Learning

Rewarding

G. Rewarding

G. Rewarding

g. Learning

Ci

(iii)	Suggest why this electrolysis experiment needs to be carried out in a fume cupboard.
	[1]
(iv)	What name is given to the positive electrode?
	[1]

(c) Complete the table to give details of the electrolysis of molten lead(II) bromide.

	Negative electrode	Positive electrode
Observations at the electrode	silvery grey liquid formed	
Name of electrolysis product		

[4]

[Turn over

11830.03**R**

Learning

Rewarding L

Learning

Rewarding L

DED Learning

GE Bewarding L

Learning Bewarding L

6	Oxy	ygen	and nitrogen are the most abundant gases found in the atmosphere.	
	(a)	(i)	State the colour of oxygen gas.	
				_ [1]
		(ii)	State one use for oxygen gas.	
				_ [1]

(b) Oxygen gas reacts with both metals and non-metals to form oxides. Complete the following table giving information about the reaction of oxygen gas with the elements magnesium and sulfur.

	Magnesium	Sulfur
Observations during reaction with oxygen	white flame	
Appearance of product after reaction with oxygen		colourless gas
Nature of oxide formed (acidic or basic)		

[5]

g Learning

GG

Rewardin

)

93

20

E

93

PE

93

20

93

)

PE

93

)

93

g Learning

Rewarding g Learning

93

(c)	(i)	State the percentage composition of nitrogen gas in the atmosphere.
		[1]
	(ii)	Explain why nitrogen gas is unreactive.
		[2]
	(iii)	Apart from nitrogen and oxygen, name two other gases which are present in the atmosphere.
		1
		2 [2]

THIS IS THE END OF THE QUESTION PAPER

11830.03**R**

Learning

Rewarding L

DED Learning

GG Rewarding L

Rewarding L.

g Learning

Rewarding

g Learning

Generaling

Rewarding

g Learnina

g Learning

Rewarding

Rewarding g Learning

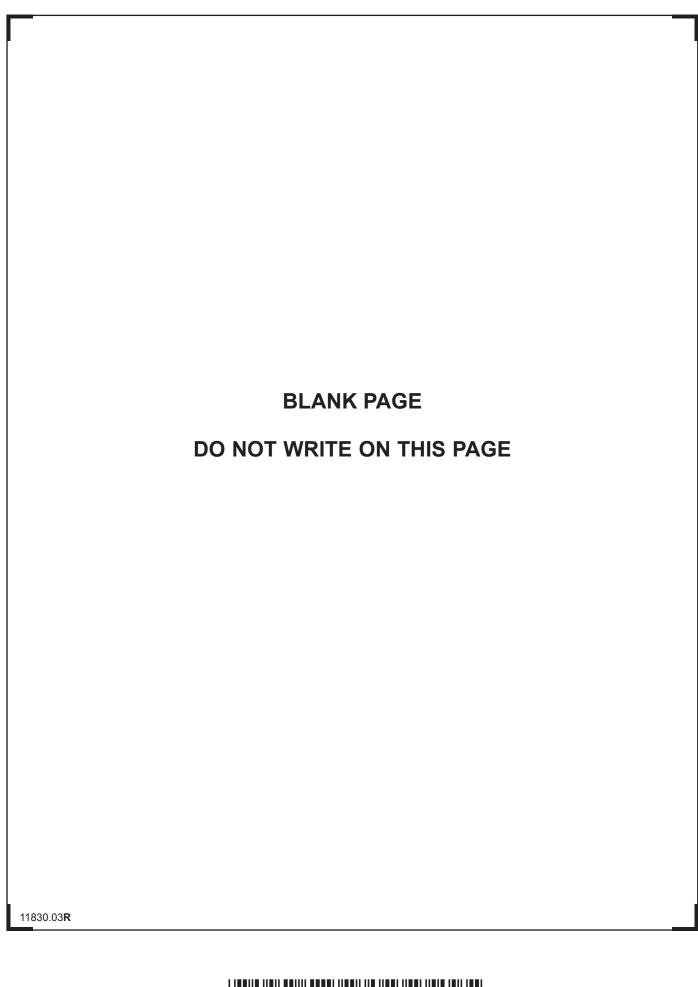
Revarding

Q Learning

Revarding

g Learning

Rewarding


g Learning

Rewarding g Learning

g Learning

earning G

DO NOT WRITE ON THIS PAGE

For Exa	
Question Number	Marks
1	
2	
3	
4	
5	
6	

g Learning

Rewardin,

g Learning

)

g Learning

20

20

93

PE

)

g Learning

9 Learning

93

DED IN LOCATION

DE P

P

g Learning

g Learning

g Learning

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

240632

SYMBOLS OF SELECTED IONS Positive ions Negat

Negative ions

Name	Symbol
Ammonium	NH ₄ ⁺
Chromium(III)	Cr ³⁺
Copper(II)	Cu ²⁺
Iron(II)	Fe ²⁺
Iron(III)	Fe ³⁺
Lead(II)	Pb ²⁺
Silver	Ag⁺
Zinc	Zn ²⁺

Symbol
C ₃ H ₇ COO-
CO ₃ ²⁻
Cr ₂ O ₇ ²⁻
CH₃COO⁻
HCO₃
OH⁻
HCOO⁻
NO ₃
C ₂ H ₅ COO ⁻
SO ₄ ²⁻
SO ₃ ²⁻

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble
All sodium, potassium and ammonium salts
All nitrates
Most chlorides, bromides and iodides
EXCEPT silver and lead chlorides, bromides and iodides
Most sulfates EXCEPT lead and barium sulfates
Calcium sulfate is slightly soluble

	Insoluble										
	Most carbonates										
	EXCEPT sodium, potassium and ammonium carbonates										
Most hydroxides											
	EXCEPT sodium, potassium and ammonium hydroxides										
	Most oxides										
	EXCEPT sodium, potassium and calcium oxides which react with water										

© CCFA 2017

COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT
29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG
Tol: +44 (0)28 2026 1220 Febr. +44 (0)28 2026 1224

Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234 Email: info@ccea.org.uk Web: www.ccea.org.uk

Data Leaflet Including the Periodic Table of the Elements

For the use of candidates taking Science: Chemistry, Science: Double Award or Science: Single Award

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gcse examinations chemistry

THE PERIODIC TABLE OF ELEMENTS Group

	3.34																
1 H Hydrogen 1 3 4 5 6													7	4 He Helium			
7 Li Lithium	9 Be Beryllium							_				B Boron	12 Carbon	14 N Nitrogen 7	16 Oxygen 8	19 Fluorine 9	Ne Neon 10
Na Sodium	Mg Magnesium 12										_	27 Al Aluminium 13	28 Si Silicon 14	Phosphorus	32 S Sulfur 16	35.5 Chlorine 17	40 Ar Argon 18
39 K Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Cr Chromium 24	Mn Manganese 25	Fe lron 26	Co Cobalt 27	Nickel 28	Cu Copper 29	65 Zn Zinc 30	Ga Gallium	Germanium 32	75 As Arsenic 33	Se Selenium 34	Br Bromine 35	Krypton 36
Rb Rubidium 37	Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	98 TC Technetium 43	Ruthenium	Rh Rhodium	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	Indium 49	119 Sn 50	Sb Antimony 51	128 Te Tellurium 52	127 lodine 53	131 Xe Xenon 54
133 Cs Caesium 55	137 Ba	139 La *	178 Hf Hafnium 72	¹⁸¹ Ta	184 W Tungsten	186 Re	190 OS Osmium 76	192	195 Pt Platinum 78	197 Au Gold 79	201 Hg	204 TI Thallium	207 Pb	209 Bi Bismuth	Po Polonium 84	210 At Astatine	Rn Radon 86
223 Fr	Ra Radium	227 Actinium	261 Rf Rutherfordium 104	Db Dubnium 105	266 Sg Seaborgium 106	264 Bh	277 HS Hassium 108	268 Mt Meitnerium 109	271 DS Darmstadtium 110	Rg Roentgenium	285 Cn Copernicium 112		•	•		-	•

* 58 – 71 Lanthanum series † 90 – 103 Actinium series

a = relative atomic mass (approx) **x** = atomic symbol **b** = atomic number

140	141	144	145	150	152	157	159	162	165	167	169	173	175
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Cerium 58	Praseodymium 59	Neodymium 60				Gadolinium 64	Terbium 65	Dysprosium 66	Holmium	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
232	231	238	237	242	243	247	245	251	254	253	256	254	257
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
90	91	92	93	94	95	96	97	98	99	100	101	102	103