

Centre Number				
	Can	didat	e Nu	mber

General Certificate of Secondary Education 2022

Physics

Unit 1

Foundation Tier

GPY11

[GPY11] TUESDAY 7 JUNE, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 80.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 2(e).

12977

28GPY1101

BLANK PAGE

DO NOT WRITE ON THIS PAGE

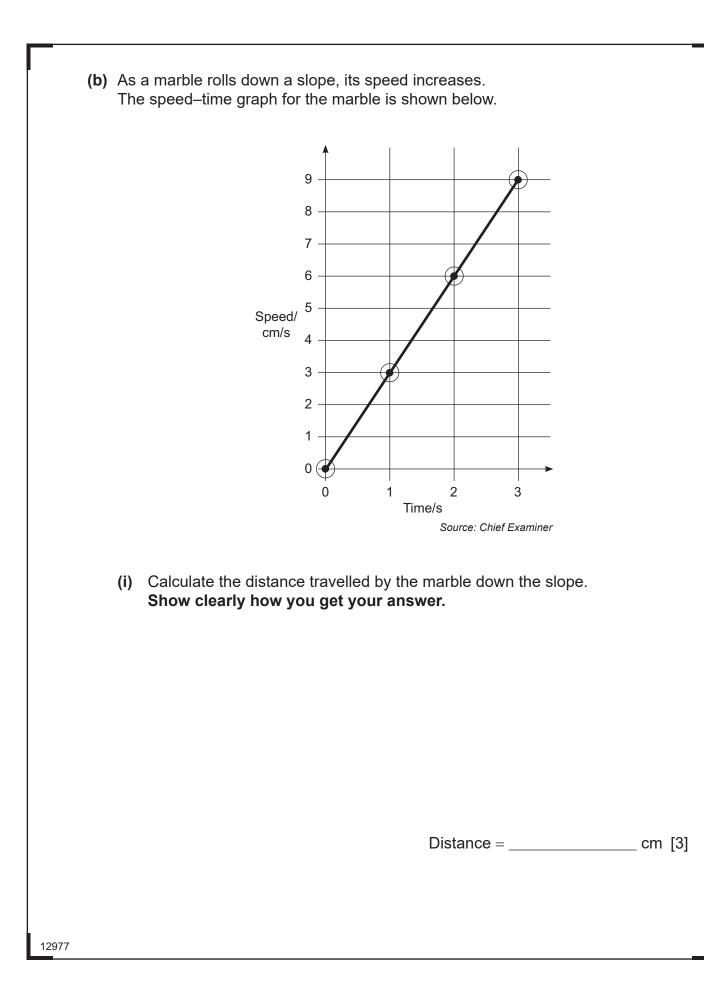
28GPY1102

(a) An athlete runs a 400 m race in a time of 50 seconds.

Souce: © Getty Images

Calculate the average speed of the athlete.

Show clearly how you get your answer, starting with the equation you plan to use.


Average speed = _____ m/s [3]

12977

[Turn over

28GPY1103

28GPY1104

Ð Œ <u>C</u> ÐÐ <u>C</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ ÐÐ ÐÐ <u>O</u> ÐÐ ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>C</u> Hewardin DO g Learning <u>O</u> Ð <u>C</u> ÐÐ Œ ÐÐ Œ

Rewarding L Learning Rewarding L DOD Learning Rewarding L Rewarding Learning CCC Rewarding L Ð Rewarding L DE Learning Cesarring CCE Rewarding L D Learning Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L Ð CCC Rewarding L Rewarding L Rewarding L. Ð CCC Rewarding L Hewarding Rewarding L Rewarding L Learning Rewarding L Learning 12977 Rewarding L DED Learning Learning COCC Rewarding L Rewarding L) DED

Œ

(ii)	Calculate the rate the slope. Show clearly ho plan to use.			avels down
		Rate of change	e of speed = _	cm/s ² [3]
				[Turn over

28GPY1105

	[3]
Aw	ooden rod is pivoted at its centre. eight W is placed as shown. e rod is in equililbrium when a force of 4 N is placed as shown.
	30 cm 40 cm
	4N W Wooden rod
	Source: Chief Examiner
(ii)	Calculate the weight W. Show clearly how you get your answer.
	W = N [3]

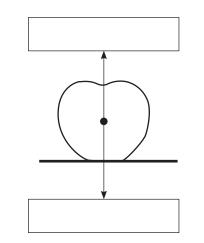
28GPY1106

g g Learning

(iii) The weight W is moved towards the centre of the wooden rod. In which direction should the 4 N weight be moved so that the rod is again in equilibrium?

_____ [1]

(d) Explain, in terms of pressure, why a sharp knife makes cutting a material easier.


_____ [2]

[Turn over

28GPY1107

2 (a) The diagram shows an apple at rest sitting on a level surface.

Source: Chief Examiner

The apple has two forces acting on it. Write the name of each force in the appropriate box.

What can you say about the size of the two forces?

(b) The diagram shows a cyclist **moving** along a level road. The two horizontal forces acting are shown.

Source: Getty Images Plus 1072556762

(i) Describe the motion of the cyclist.

12977

28GPY1108

<u>C</u>

[3]

[1]

Œ ÐÐ **C** Ð Rewarding L below. Rewarding L Learning CCC Rewarding L Ð Rewarding L Rewarding L Rewarding L Rewarding L Rewarding Rewarding L Rewarding L Rewarding L Rewarding L Rewarding L Ð Rewarding L Ð CCC Rewarding L Hewarding L Ð Rewarding L Ð CCC Bewardina L Rewarding L Learning OGG Rewarding L Ð Rewarding L 12977 Ð CCC Rewarding L Ð Cearning Constant Ð Œ

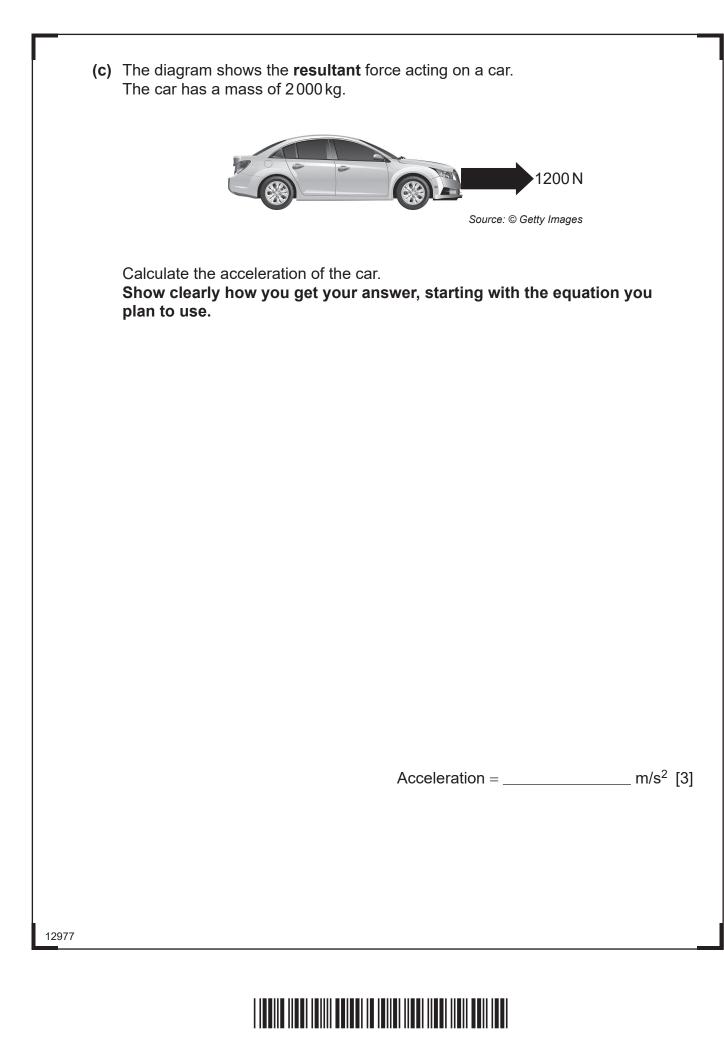
DE)

At another time the two forces acting on the cyclist have changed, as shown below.

Source: © Getty Images

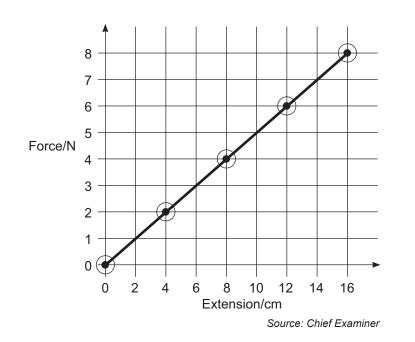
(ii) Calculate the resultant of these two forces and state its direction.

Resultant force = _____ N


Direction = _____ [2]

[Turn over

28GPY1109



28GPY1110

Œ <u>O</u>E E) .uming CCCC Reward Learning Rewarding L Ð Learning CCC Rewarding L Ð Learning Rewarding I Ð Rewarding L Hewarding L Rewarding L Rewarding L Rewarding L Rewarding L Learning OCC Rewarding L Ð Learning COCC Rewarding L Rewarding L Ð Rewarding L)E) CCC Rewarding L Ð Rewarding L Ð CCC Bewardina L Rewarding L Learning OGG Rewarding L Ð Rewarding L 12977 Ð CCC Rewarding L 20 Rewarding L Rewarding (

)A)

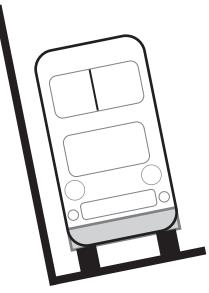
(d) During an experiment to investigate the stretching of a spring the graph below was obtained.

Using the graph, determine the spring constant of the spring. **Show clearly how you get your answer.**

Spring constant = _____

Unit = _____ [4]

[Turn over



28GPY1111

<u>O</u> ÐÐ <u>O</u> Ð <u>O</u> ÐÐ 0 Ð ÐÐ ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ 0 Ð ÐÐ Œ ÐÐ <u>O</u> ÐÐ ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ 0 ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>C</u> ÐÐ 0 ÐÐ Ð ÐÐ

Ð

(e) The diagram shows a double-decker bus undergoing a tilt test. The centre of gravity is an important concept when dealing with the stability of an object such as a double-decker bus.

Source: Chief Examiner

Describe the role the centre of gravity and other factors play in the stability of the double-decker bus.

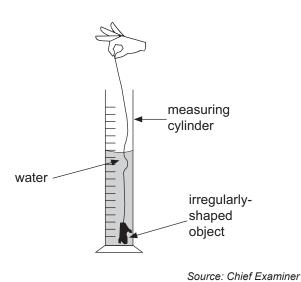
In your answer you should state:

- the meaning of centre of gravity;
- how the position of the centre of gravity affects stability;
- another factor affecting stability;
- why standing on the upper deck of such a bus is not allowed;
- what causes the bus to fall over if it is tilted beyond a certain angle.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

Write your answers on the opposite page.

12977



28GPY1112

Centre of gravity and stability	
Cause of bus falling over	
	[Turn o

28GPY1113

The measuring cylinder initially contained 220 cm^3 of water. When the object is placed in the measuring cylinder the water level rises to 235 cm^3 .

The irregularly-shaped object has a mass of 120 g. Calculate the density of the metal and state its unit.

Show clearly how you get your answer, starting with the equation you plan to use.

Unit = _____ [5]

12977

28GPY1114

<u>C</u>

(b) (i) The kinetic theory describes matter as a large number of particles. The following statements are about the particles that are found in solids, liquids and gases.

In each box state whether the statement relates to the particles in a solid, a liquid or a gas.

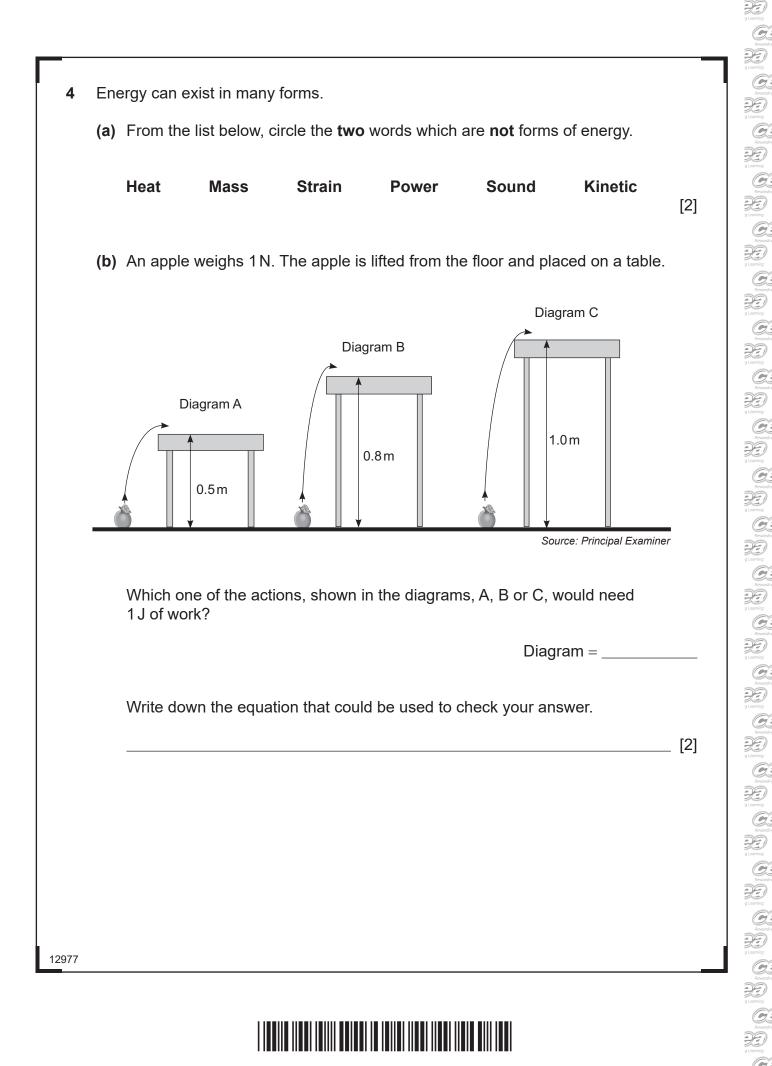
Statement	Solid, Liquid or Gas
The particles have large gaps between them and are entirely free to move.	
The particles are mainly touching but have small gaps between them.	
The particles have strong forces between them.	

(ii) The kinetic theory can also be used to describe how heat is conducted by a metal. Name the particle that plays a major role in the conduction of heat by a **metal** and how the heat energy is transferred.

Particle = _____

_____ [2]

[3]


[Turn over

28GPY1115

12977

DE)

28GPY1116

Œ

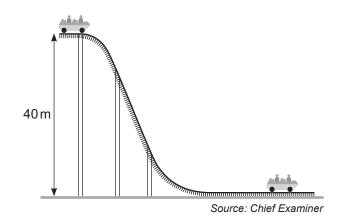
(c)	(i)	State the Principle of Conservation of Energy.
		[2]
	(ii)	Televisions use electrical energy. In the diagram below, insert the names of the output energies in the boxes provided.
		Electrical energy Television
		Source: Chief Examiner
		Which of the output forms of energy you have named is not useful in a television?
		Energy form [4]
		[Turn over

28GPY1117

<u>O</u> Ð Œ ÐÐ G ÐÐ <u>C</u> ÐÐ <u>O</u> <u>O</u> ÐÐ Ø ÐÐ <u>C</u> ÐÐ Œ ÐÐ <u>C</u> ÐÐ G ÐÐ G Ð <u>O</u> ÐÐ <u>C</u> Ð <u>C</u> ÐÐ Œ ÐÐ <u>C</u> Œ Hewardin DDD g Learning Œ Ð <u>O</u> ÐÐ Œ ÐÐ Œ

g g Learning

 (iii) The television has an efficiency of 0.75. The input electrical energy is 200 J. Calculate the useful output energy.
Show clearly how you get your answer, starting with the equation you plan to use.


Useful energy = _____ J [3]

12977

28GPY1118

(d) A car of mass 200 kg is at the top of a roller coaster, as shown in the diagram below.

(i) Calculate the potential energy of the car at the top of the roller coaster. Show clearly how you get your answer, starting with the equation you plan to use.

Potential energy = _____ J [3]

 (ii) At the bottom of the roller coaster the speed of the car is 20 m/s. Calculate its kinetic energy.
Show clearly how you get your answer, starting with the equation you plan to use.

Kinetic energy = _____ J [3]

[Turn over

28GPY1119

(e) Two metal cans, **A and B**, of equal dimensions are made of the same material. However, one can is painted silver the other can is painted matt black. Both were filled at the same time with very hot water.

The temperature of each can was measured over a period of several minutes and the temperature–time graphs obtained as each can cools are shown below.

	Temperature		Can B Can Time Source: Chief Exam	→	
Which can cools Why does this c Can	an cool faster	r?			
Reason					
12977					

28GPY1120

Œ

[2]

BLANK PAGE

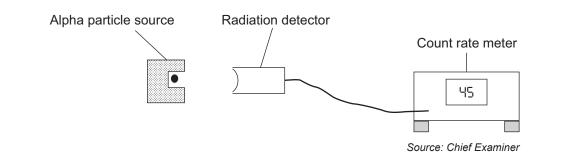
DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

12977

[Turn over

28GPY1121

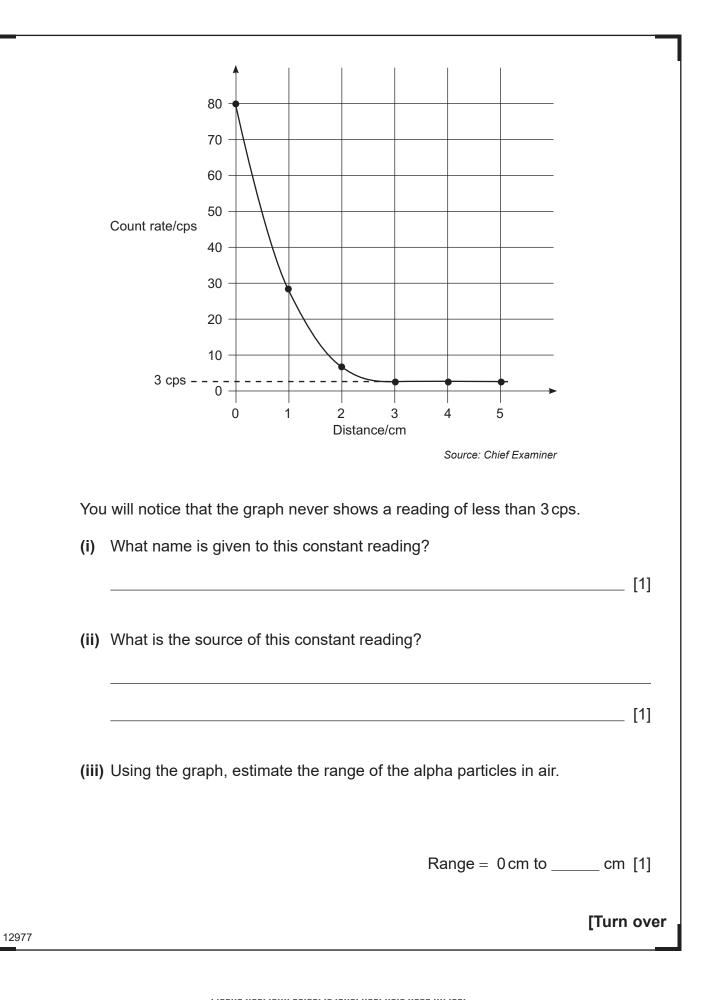

Œ ÐÐ <u>O</u> ÐÐ O: ÐÐ <u>O</u> ÐÐ <u>C</u> 92) <u>O</u> ÐÐ <u>O</u> ÐÐ <u>O</u>)@ <u>O</u> ÐÐ ÐÐ <u>O</u> ÐÐ O: ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ 0 ÐÐ <u>O</u> ÐÐ <u>O</u> ÐÐ <u>C</u> Ð <u>C</u> ÐÐ <u>O</u>) ÐÐ <u>C</u>

Ð

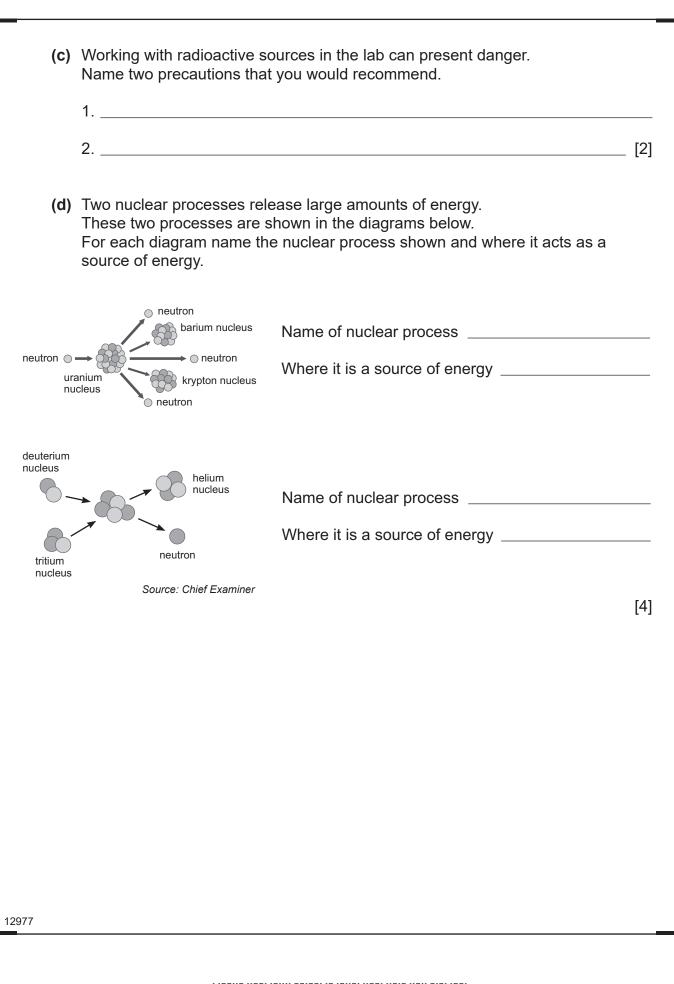
5 (a) Atoms are composed of three types of particle. Complete the table below by filling in the blank boxes. Some have already been done for you.

Name of particle	Position in atom	Relative electrical charge	Relative mass
proton	In the nucleus	+ 1	1
neutron			
			<u>1</u> 1836
		1	[3]

(b) The range of alpha (α) particles in air may be investigated using the equipment shown below.



The distance between the alpha source and the radiation detector is changed. The reading on the count rate meter is noted in counts per second (cps) for each distance.


A graph of the count rate against the distance was plotted as shown opposite.

28GPY1122

12977

28GPY1123

28GPY1124

g Learning Rewarding g Learning g Learning

ÐÐ

Œ

ÐÐ

<u>O</u>

DE g Learning

ÐÐ

Œ

DO g Learning CO Rewarding

Rewardin DE

THIS IS THE END OF THE QUESTION PAPER

12977

28GPY1125

BLANK PAGE

DO NOT WRITE ON THIS PAGE

28GPY1126

BLANK PAGE

DO NOT WRITE ON THIS PAGE

12977

28GPY1127

DO NOT WRITE ON THIS PAGE

For Examiner's use only			
Question Number	Marks		
1			
2			
3			
4			
5			
Total Marks			

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

GPY11/8 261156

28GPY1128

Œ