General Certificate of Secondary Education

2022

GCSE Physics

Unit 1

Higher Tier
[GPY12]

TUESDAY 7 JUNE, MORNING

MARK
 SCHEME

General Marking Instructions and Mark Grids

Introduction

Mark schemes are intended to ensure that the GCSE examination is marked consistently and fairly. The mark schemes provide markers with an indication of the nature and range of candidates' responses likely to be worthy of credit. They also set out the criteria that they should apply in allocating marks to candidates' responses. The mark schemes should be read in conjunction with these marking instructions.

Quality of candidates' responses

In marking the examination papers, examiners should be looking for a quality of response reflecting the level of maturity which may reasonably be expected of a 16 -year-old which is the age at which the majority of candidates sit their GCSE examinations.

Flexibility in marking

Mark schemes are not intended to be totally prescriptive. No mark scheme can cover all the responses which candidates may produce. In the event of unanticipated answers, examiners are expected to use their professional judgement to assess the validity of answers. If an answer is particularly problematic, the examiners should seek the guidance of the Supervising Examiner.

Positive marking

Examiners must be positive in their marking, giving appropriate credit for description, explanation and analysis, using knowledge and understanding and for the appropriate use of evidence and reasoned argument to express and evaluate personal responses, informed insights and differing viewpoints. Examiners should make use of the whole of the available mark range of any particular question and be prepared to award full marks for a response which is as good as might reasonably be expected of a 16-year-old GCSE candidate.

Awarding zero marks

Marks should only be awarded for valid responses and no marks should be awarded for an answer which is completely incorrect or inappropriate.

Types of mark scheme

Mark schemes for questions which require candidates to respond in extended written form are marked on the basis of levels of response which take account of the quality of written communication.

Other questions which require only short answers are marked on a point for point basis with marks awarded for each valid piece of information provided.

COVID-19 Context

Given the unprecedented circumstances presented by the COVID-19 public health crisis, senior examiners, under the instruction of CCEA awarding organisation, are required to train assistant examiners to apply the mark scheme in case of disrupted learning and lost teaching time. The interpretation and intended application of the mark scheme for this examination series will be communicated through the standardising meeting by the Chief or Principal Examiner and will be monitored through the supervision period. This paragraph will apply to examination series in 2021-2022 only.
(a) (i) $20(\mathrm{~m})$
(ii) 20 (s)
(iii) speed $=$ distance/time or symbols

$$
80 /(30-10)
$$

$$
=4(\mathrm{~m} / \mathrm{s})
$$

(b) (i) (Displacement) $=$ area under graph
$=0.5 \times(3 \times 9)+1 \times 9$
or
$=0.5 \times(4+1) \times 9$ (worth 2 marks)
$=22.5(\mathrm{~cm})$
(ii) $\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ or $\quad \mathrm{a}=$ gradient $=(9-0) / 3$ or $\quad=(9-0) /(3-0)$ $=3\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
(c) (i) Vectors have direction or

Scalars do not have direction
Vector examples: force, displacement, velocity, acceleration
Scalar examples: mass, length, area, volume, speed, energy, etc.
(ii) Displacement $=0$
(d) (i) $t=(v-u) / a \quad$ (or equivalent)

$$
\begin{align*}
& =(0-6) /(-10) \text { or } \frac{6}{10} \tag{1}\\
& =0.6 \mathrm{~s} \tag{1}
\end{align*}
$$

(u, v confusion, deduct 1 mark, once only, if correct answer obtained)
(ii) Height $=$ average speed \times time

Height $=3 \times 0.6$ (ecf for t from (i))

$$
\begin{equation*}
=1.8(\mathrm{~m}) \tag{1}
\end{equation*}
$$

Sight of 3 is worth 1 mark
or
$\mathrm{s}=0.5(\mathrm{u}+\mathrm{v}) \mathrm{t}$ [1]
$=0.5 \times 6 \times 0.6$ (ecf for t from (i)) [2]
$=1.8(\mathrm{~m})[1]$
or
$\mathrm{s}=\mathrm{ut}+0.5 \mathrm{at}^{2}[1]$
$=6 \times 0.6-0.5 \times 10 \times 0.6^{2}($ ecf for t from (i)) [2]
$=1.8(\mathrm{~m})$ [1]
or
$s=\left(v^{2}-u^{2}\right) / 2 a[1]$
$=\left(0^{2}-6^{2}\right) /(-20)[2]$
$=1.8 \mathrm{~m}$ [1]
or
$\left.\begin{array}{rl}m g h & =\frac{1}{2} m v^{2} \\ g h & =\frac{1}{2} v^{2}\end{array}\right\} P E=K E[1]$
$10 \mathrm{~h}=\frac{1}{2} \times 6^{2}[2]$

$$
\mathrm{h}=\frac{18}{10}=1.8 \mathrm{~m}[1]
$$

2 (a) (i) Straight line up to 8 N curve beyond this point
(ii) $\mathrm{F}=\mathrm{ke}$ or $\mathrm{k}=$ gradient
$8=k \times 16$ or $2 / 4$ etc
$\mathrm{k}=0.5$
N / cm
(iii) Straight line from 0,0

Through 32,8
(b) The point

Where the weight of the bus acts
The lower the CoG the more stable the bus
The width of the base/distance across the bus wheel to wheel This raises the CoG
The weight acts outside the base/wheel
This causes a turning effect

Candidate describes in detail using good spelling, punctuation and grammar 5 or more points shown above. The form and style are of a high standard and specialist terms are used appropriately at all times.	[5]-[6]
Candidate describes in detail using good spelling, punctuation and grammar 3 or 4 points shown above. The form and style are of a high standard and specialist terms are used appropriately at all times	[3]-[4]
Candidates make some reference to 1 or 2 of the main points shown above using satisfactory spelling, punctuation and grammar. The form and style are of a satisfactory standard and they have made some reference to specialist terms.	[1]-[2]
Response not worthy of credit.	$[0]$

(c) $\mathrm{F}=\mathrm{ma}$
$F=2000 \times 0.4$
$\mathrm{F}=800 \mathrm{~N}$

$$
\begin{align*}
\text { or } F & =m a \tag{1}\\
1200-F & =2000 \times 0.4 \tag{2}\\
F & =400(N) \tag{1}
\end{align*}
$$

Resistance $=1200-800=400(\mathrm{~N})$
(d) $\mathrm{ACM}=\mathrm{CM}$
$4 \times 10=20 \times W$
$\mathrm{W}=40 / 20=2 \mathrm{~N}$
(e) $P=F / A$ or $A=F / P$
$A=5000 / 2.5 \times 10^{5}$
$=0.02\left(\mathrm{~m}^{2}\right)$
[1] [3]

3 (a) (i) Take the read from the bottom of the meniscus or avoid parallax error
(ii) New measurement $=220+28=248$
(iii) Mass $=$ density \times volume or $\mathrm{M}=\mathrm{D} \times \mathrm{V}$

$$
\begin{aligned}
& =2.7 \times 28 \\
& =75.6(\mathrm{~g})
\end{aligned}
$$

(iv) Mass on x-axis and volume on y-axis with units on correct axes gets [2]
Mass and volume but without units on the correct axes gets [1] Mass and volume with units but on wrong axis gets [1]
(b) (i) Water molecules are further apart
(ii) Gas

Liquid
Solid

4 (a) (i)

Energy resource	Renewable	Non-renewable
Coal		\checkmark
Nuclear Fission		\checkmark
Sunlight	\checkmark	
Geothermal	\checkmark	

[$\frac{1}{2}$] each round down
(ii) Coal when burned releases carbon dioxide/sulfur dioxide
(b) Efficiency = useful energy out/total energy in

$$
\begin{aligned}
& =80 / 150 \quad[1] \text { for each correct value } \\
& =0.53
\end{aligned}
$$

(c) (i) $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} m v^{2}$

$$
\begin{align*}
& =\frac{1}{2} \times 500 \times 20^{2} \tag{1}\\
& =100000(\mathrm{~J})
\end{align*}
$$

[1] [3]
(ii) 100000 (ecf from (i))
(iii) Work $=$ force \times distance or $\mathrm{W}=\mathrm{F} \times \mathrm{D}$
$100000=F \times 50$ allow ecf from (i)
$\mathrm{F}=2000(\mathrm{~N})$
Force per brake $=500(\mathrm{~N})$
(iv) Heat and Sound both required
(d) (i) $E_{p}=m g h$

$$
\stackrel{[1]}{[1]}
$$

$$
\begin{align*}
& =\frac{\left(0.3 \times 10^{11}+2.0 \times 10^{11}\right)}{600} \tag{1}\\
& =\frac{2.3 \times 10^{11}}{600} \\
& =3.8 \times 10^{8}(\mathrm{~W}) \tag{1}
\end{align*}
$$

(e) Beaker A

Temperature drop for beaker A = 100-55 = $45^{\circ} \mathrm{C}$
Temperature drop for beaker $\mathrm{B}=50-20=30^{\circ} \mathrm{C}$
(ii) Power $=$ energy/time

5 (a) (i)

(ii) 32 to 16 to 8 to $4=3$ half lives

Age $=3 \times 5730$
$=17190$ (years)
(b) (i) Background (radiation)
(ii) Named sources such as cosmic rays rocks
(iii) Range (0) to 2.5 or 3 cm
(c) Causes ionisation

May damage genes/DNA in cells or cause cancer
(d) (i) Hydrogen

Deuterium
Tritium or Lithium
(ii) In the seas/oceans
(iii) Helium

MARKS

