

Centre Number					
Candidate Number					

General Certificate of Secondary Education 2017–2018

Double Award Science: Physics

Unit P1 Foundation Tier

[GSD31]

GSD31

WEDNESDAY 23 MAY 2018, AFTERNOON

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all nine** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 7.

11522.05**RR**

20GSD3101

		coal	solar	nuclear	
		gas	wind	oil	
Sor	ne energy res	sources are ren	ewable and sor	ne are non-renewable).
(i)	What is a no	on-renewable e	nergy resource	?	
(ii)	Give the nan	nes of two rene	wable energy r	resources from the list	t.
			and		
(iii)	Harm to the energy resou Tick (✓) the	environment is urce. correct box belo	an important co ow.	onsideration when cho	oosing an
	Renewable e	energy resource	es cause most l	narm to the environme	ent.
	Non-renewa	ble energy reso	urces cause m	ost harm to the enviro	nment.
	Both are equ	ually harmful.			
(iv)	In what way	do fossil energy	resources pol	lute the environment?	1

20GSD3102

P

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

11522.05**RR**

[Turn over

20GSD3103

2	A stude	ent uses a mobile phone.	
		© scyther5 / iStock / Thinkstock	
	(a) (i)	Name two useful energy forms produced by a mobile phone.	
		energy and energy. [2]	
	(ii)	The mobile phone uses a battery. Complete the sentence below.	
		The energy stored in the battery provides	
		energy to power the phone. [2]	
11522.05 R	R		

20GSD3104

20GSD3105

20GSD3106

Reasertin 20 7 Learning a 20 a Ð a Ð a Ð a Ð G Ð a Ð a Ð CC. D G D C Ð CC. D a 2D a Ð a Ð a Ð a Ð a Ð a D CC. 200 CC. 20 CC.

Ð

D

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

11522.05**RR**

[Turn over

20GSD3107

200 J Learning a 20 7 Learning a 20 G Ð a 20 JLeaming C 20 J Learning Rewardin 2 CC. D C D CC. 20 G 200 C Ð Rowardin 20 Q 20 J Learning C Ð C Ð a 20 G Ð a Ð C 200 CC: 20 20 CC. Ð D

Resarch

- **4** Weight and mass are different quantities and are measured in different units.
 - (a) What is the weight of 300 g?

You are advised to show your working out.

Weight = _____ N [3]

11522.05**RR**

20GSD3108

		Density =		[5]
In a	different set of iron nails, each nail has a mass of	5.0 g.		
(c)	How will the density of these 5.0 g iron nails comp 3.0 g iron nails? Choose by ticking (\checkmark) the correct	pare with the density of box below.	of the	
	The 5.0 g nails will have a bigger density.			
	The 5.0 g nails will have a smaller density.			
	The 5.0 g nails will have the same density.			[1]
11522.05 RR			[Turı	n over

20GSD3109

20GSD3110

D

	(iii) Complete the following by ticking (✓) the correct box.The feature of the graph which allowed you to answer part ((ii) was:	
	The graph has the greatest gradient in this region;		
	The graph has the smallest gradient in this region;		
	The area under the graph was greatest in this region.] [1]
	(iv) State the distance travelled in the following time intervals.		
	Distance travelled in the first 3 seconds	m	
	Distance travelled in the first 9 seconds	m	[2]
(b)	Use the graph to find the average speed of the cyclist over the v Give your answer to one decimal place.	vhole jourr	ıey.
	You are advised to show your working out.		
	Average speed =	n	1/s [3]
11522.05 RR		[Furn over

20GSD3111

(a)	A nucleus decays because it is		and so emits
	parti	icles or	particles
	or	_ radiation.	[4
A ra thes	idioactive substance has 8400 und se nuclei remain undecayed.	decayed nuclei and 90) minutes later 1050 of
(b)	Calculate the half-life of the mate	rial.	
	You are advised to show your v	working out.	
		Half-life =	minutes [3

20GSD3112

P

7 Describe the structure of the atom.

In your answer state:

- the names of the particles which make up the atom;
- where these particles are located.

In this question you will be assessed on your communication skills including the use of specialist scientific terms.

 	 [6]
	[Turn ov

20GSD3114

Ð

P2

20GSD3115

9 The electrical resistance of a piece of metal wire changes with temperature. It is suggested that the resistance of the wire is directly proportional to its temperature in °C.

This relationship could be written in the form:

R = kt Equation 9.1

where R is the resistance in ohms, t is the temperature in $^{\circ}C$ and k is a constant. To test this, the resistance of the wire is found at different temperatures.

The results are recorded below.

t/°C	100	200	300	400	500
R/ohms	100	125	150	175	200

20GSD3116

(iii) Draw the line of best fit and continue the line until it cuts the vertical axis.	[1]
(iv) Use the graph to find the resistance of the wire at 0 °C.You are advised to show how you get your answer.	
Resistance =ohm	s [2]
	• [-]
(v) Does your graph confirm the theory described by Equation 9.1 ?	
Yes / No Circle your choice.	
Explain your answer.	
	_ [1]
(vi) Find the gradient of your graph and include the unit.	
You are advised to show your working out.	
Gradient =	_
	[0]
Unit =	_ [3]
THIS IS THE END OF THE QUESTION PAPER	
522.05 RR	

11522.05**RR**

20GSD3118

DO NOT WRITE ON THIS PAGE

11522.05**RR**

20GSD3119

DO NOT WRITE ON THIS PAGE

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total Marks		

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

11522.05**RR**

20GSD3120