Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided – there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed – you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.
- You should use a calculator in this examination.
The Periodic Table of the Elements

* The lanthnoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

<table>
<thead>
<tr>
<th>Key</th>
<th>relative atomic mass</th>
<th>atomic symbol</th>
<th>atomic (proton) number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>hydrogen</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periodic Table of the Elements</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Li lithium</td>
<td>3</td>
<td>9 Be beryllium</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Na sodium</td>
<td>11</td>
<td>23 Mg magnesium</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 K potassium</td>
<td>19</td>
<td>27 Al aluminium</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 Rb rubidium</td>
<td>37</td>
<td>45 Sc samarium</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133 Cs cesium</td>
<td>133</td>
<td>53 Tc technetium</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223 Fr francium</td>
<td>223</td>
<td>87 Rn radon</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226 Ra radium</td>
<td>226</td>
<td>227 Ac* actinium</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227 Th thorium</td>
<td>227</td>
<td>228 PK protactinium</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228 U uranium</td>
<td>228</td>
<td>232 Th thorium</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232 Cm curium</td>
<td>232</td>
<td>233 Bk berkili</td>
<td>233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233 Cm curium</td>
<td>233</td>
<td>234 Cm curium</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234 Np neptunium</td>
<td>234</td>
<td>235 Pa neptunium</td>
<td>235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235 Pa neptunium</td>
<td>235</td>
<td>236 Pa neptunium</td>
<td>236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236 Np neptunium</td>
<td>236</td>
<td>237 U uranium</td>
<td>237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237 Cm curium</td>
<td>237</td>
<td>238 Pu plutonium</td>
<td>238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238 Cm curium</td>
<td>238</td>
<td>239 Am actinium</td>
<td>239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239 Cm curium</td>
<td>239</td>
<td>240 Cm curium</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 Np neptunium</td>
<td>240</td>
<td>241 Np neptunium</td>
<td>241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241 Pa neptunium</td>
<td>241</td>
<td>242 Pa neptunium</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242 Np neptunium</td>
<td>242</td>
<td>243 Np neptunium</td>
<td>243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243 Pa neptunium</td>
<td>243</td>
<td>244 Pa neptunium</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244 Np neptunium</td>
<td>244</td>
<td>245 Np neptunium</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245 Pa neptunium</td>
<td>245</td>
<td>246 Pa neptunium</td>
<td>246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246 Np neptunium</td>
<td>246</td>
<td>247 Np neptunium</td>
<td>247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247 Pa neptunium</td>
<td>247</td>
<td>248 Pa neptunium</td>
<td>248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248 Np neptunium</td>
<td>248</td>
<td>249 Np neptunium</td>
<td>249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249 Pa neptunium</td>
<td>249</td>
<td>250 Pa neptunium</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 Np neptunium</td>
<td>250</td>
<td>251 Np neptunium</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251 Pa neptunium</td>
<td>251</td>
<td>252 Pa neptunium</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252 Np neptunium</td>
<td>252</td>
<td>253 Np neptunium</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253 Pa neptunium</td>
<td>253</td>
<td>254 Pa neptunium</td>
<td>254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254 Np neptunium</td>
<td>254</td>
<td>255 Np neptunium</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255 Pa neptunium</td>
<td>255</td>
<td>256 Pa neptunium</td>
<td>256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256 Np neptunium</td>
<td>256</td>
<td>257 Np neptunium</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257 Pa neptunium</td>
<td>257</td>
<td>258 Pa neptunium</td>
<td>258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258 Np neptunium</td>
<td>258</td>
<td>259 Np neptunium</td>
<td>259</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259 Pa neptunium</td>
<td>259</td>
<td>260 Pa neptunium</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260 Np neptunium</td>
<td>260</td>
<td>261 Np neptunium</td>
<td>261</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261 Pa neptunium</td>
<td>261</td>
<td>262 Pa neptunium</td>
<td>262</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262 Np neptunium</td>
<td>262</td>
<td>263 Np neptunium</td>
<td>263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263 Pa neptunium</td>
<td>263</td>
<td>264 Pa neptunium</td>
<td>264</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264 Np neptunium</td>
<td>264</td>
<td>265 Np neptunium</td>
<td>265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265 Pa neptunium</td>
<td>265</td>
<td>266 Np neptunium</td>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266 Pa neptunium</td>
<td>266</td>
<td>267 Np neptunium</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267 Pa neptunium</td>
<td>267</td>
<td>268 Np neptunium</td>
<td>268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268 Pa neptunium</td>
<td>268</td>
<td>269 Np neptunium</td>
<td>269</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>269 Pa neptunium</td>
<td>269</td>
<td>270 Np neptunium</td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270 Pa neptunium</td>
<td>270</td>
<td>271 Np neptunium</td>
<td>271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>271 Pa neptunium</td>
<td>271</td>
<td>272 Np neptunium</td>
<td>272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elements with atomic numbers 112-116 have been reported but not fully authenticated.
Elements in the periodic table

1. (a) Copper is a metal.
   
   (i) Complete the sentence by putting a cross (✓) in the box next to your answer.
   In the periodic table copper is in
   
   - □ A group 0
   - □ B group 1
   - □ C group 7
   - □ D the transition metals

   (ii) Which of these is a property of copper metal?
   Put a cross (✓) in the box next to your answer.
   
   - □ A does not conduct an electric current
   - □ B forms colourless compounds
   - □ C has a low melting point
   - □ D is malleable
(b) Helium and argon are noble gases.

(i) Choose the correct word from this box to complete the sentence below.

non-flammable  odourless  reactive

(1)

Argon can be used to put out fires because it is .................................................................

(ii) Choose the correct phrase from this box to complete the sentence below.

has a high density  has a low density  is colourless

(1)

Helium is used in airships because it .................................................................................

(c) Chlorine, bromine and iodine are halogens.

(i) The table shows the appearance of bromine and iodine at room temperature.

Complete the table to show the appearance of chlorine at room temperature.

(2)

<table>
<thead>
<tr>
<th>halogen</th>
<th>appearance at room temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorine</td>
<td></td>
</tr>
<tr>
<td>bromine</td>
<td>dark red liquid</td>
</tr>
<tr>
<td>iodine</td>
<td>grey solid</td>
</tr>
</tbody>
</table>

(ii) Chlorine reacts with hydrogen to form hydrogen chloride.

Write the word equation for this reaction.

(2)

........................................................................  +  ........................................................................

(Total for Question 1 = 8 marks)
Elements and atoms

2 Beryllium, Be, has atomic number 4.

(a) (i) Complete the sentence by putting a cross (×) in the box next to your answer.

From its position in the periodic table (page 2), beryllium is most likely to be a

□ A metal
□ B halogen
□ C compound
□ D gas at room temperature

(ii) Give the symbol of an atom of another element in the same period of the periodic table as beryllium.

...............................................

(b) The atomic number of beryllium is 4.

The mass number of an atom of beryllium is 9.

(i) State the numbers of protons, electrons and neutrons in this atom of beryllium.

............................................... protons
............................................... electrons
............................................... neutrons

(ii) Complete the sentence by putting a cross (×) in the box next to your answer.

The relative charge on an electron is

□ A +1
□ B 0
□ C –1
□ D –2
(c) The electronic configuration of phosphorus is 2.8.5.

Explain, in terms of its electronic configuration, why phosphorus is in group 5 of the periodic table.

(Total for Question 2 = 8 marks)
Salts

3 (a) Solutions of soluble salts can react together to form an insoluble salt.

What name is given to this type of reaction?

Put a cross (X) in the box next to your answer.

☐ A combustion
☐ B neutralisation
☐ C precipitation
☐ D separation

(b) Information about the solubility of some salts is given below.

- all nitrates are soluble
- all common carbonates are insoluble except sodium carbonate, potassium carbonate and ammonium carbonate.

Copper carbonate can be made by reacting together solutions of sodium carbonate and copper nitrate.

Complete this equation by filling in the missing state symbols.

\[
\text{sodium carbonate (aq) + copper nitrate (aq) } \rightarrow \text{copper carbonate (............. ) + sodium nitrate (............. )}
\]

(c) The symbol for a copper ion is \(\text{Cu}^{2+}\).

The symbol for a carbonate ion is \(\text{CO}_3^{2-}\).

Write the formula for copper carbonate.
(d) In an experiment, solid lead iodide is produced in a mixture with a solution of a soluble salt.

Describe how a pure, dry sample of solid lead iodide can be obtained from this mixture.

(e) Two tests were carried out to identify the ions in salt X.

(i) Test: flame test on solid salt X.
   Result: lilac flame.
   Identify the ion in salt X that gives the lilac flame.

   ion in salt X .............................................................. (1)

(ii) Test: addition of dilute nitric acid and silver nitrate solution to a solution of salt X.
   Result: white solid formed.
   Identify the ion in salt X that produces the white solid.

   ion in salt X .............................................................. (1)

(Total for Question 3 = 9 marks)
Compounds

4 (a) (i) Balance the equation for the reaction between sodium and chlorine to produce sodium chloride by putting numbers in the spaces provided.

\[ \text{Na} + \text{Cl}_2 \rightarrow \text{NaCl} \]

(ii) In an experiment to make sodium chloride, the yield is 2.5 g. The theoretical yield of sodium chloride for this experiment is 4.0 g. Calculate the percentage yield of sodium chloride in this experiment.

percentage yield = .............................................................. %

(iii) Sodium chloride has a high melting point. Sodium chloride does not conduct electricity when solid but does conduct electricity when molten.

These properties show that the structure of sodium chloride is

A ionic
B giant molecular, covalent
C simple molecular, covalent
D metallic

(iv) Calculate the relative formula mass of sodium chloride, NaCl.
(relative atomic masses: Na = 23, Cl = 35.5)

relative formula mass = ..............................................................
(b) Calculate the percentage by mass of magnesium in magnesium sulfate, \( \text{MgSO}_4 \).

(relative atomic masses: \( \text{O} = 16 \), \( \text{Mg} = 24 \), \( \text{S} = 32 \)
relative formula mass: \( \text{MgSO}_4 = 120 \))

\[
\text{percentage of magnesium} = \frac{\text{mass of Mg}}{\text{mass of MgSO}_4} \times 100 \%
\]

(c) The formula of a molecule of ethane is \( \text{C}_2\text{H}_6 \).

(i) Give the empirical formula of ethane.

(ii) Ethane is a simple molecular, covalent compound.

Ethane has a low boiling point.

Explain, in terms of particles it contains, why ethane has a low boiling point.

(Total for Question 4 = 11 marks)
Bonding and separation techniques

5  (a) The diagram shows the structure of diamond.

(i) Describe what each ● represents.

.......................................................................................................................... ... ......................
.......................................................................................................................... ... ......................

(ii) State the type of bonding in the diamond structure.

.......................................................................................................................... ... ......................

(b) Give the name of the process used to obtain oxygen from liquid air.

.......................................................................................................................... ... ......................
(c) A colouring in some sweets was analysed using paper chromatography.

One of the dyes in the colouring moved 2 cm up the paper while the solvent moved 8 cm.

What is the R\textsubscript{f} value of this dye?

Put a cross (\checkmark) in the box next to your answer.

\begin{itemize}
  \item A 0.25
  \item B 2
  \item C 4
  \item D 6
\end{itemize}

*(d) Here is some information about magnesium, oxygen and magnesium oxide.

The electronic configuration of magnesium atoms is 2.8.2
The electronic configuration of oxygen atoms is 2.6
Magnesium oxide is an ionic compound.

When magnesium ribbon is heated, it reacts with oxygen from the air to form magnesium oxide, MgO.

Describe how the reaction can be carried out, including an explanation of what happens to the magnesium and oxygen atoms when they form magnesium oxide.

(Total for Question 5 = 12 marks)
6 (a) When zinc reacts with copper sulfate solution, zinc sulfate solution and copper are formed.

(i) An experiment was carried out to measure the temperature change when zinc powder reacts with copper sulfate solution.

- initial temperature of copper sulfate solution = 20 °C
- final temperature of mixture after the reaction = 46 °C

Explain what the temperature readings show about the type of heat change that occurs during this reaction.

(ii) Complete the equation for the reaction between zinc and copper sulfate by putting formulae in the spaces provided.

\[ Zn + CuSO_4 \rightarrow \text{ } + \text{ } \]

(2)
(b) A length of magnesium ribbon was added to excess hydrochloric acid. The time for all of the magnesium to react was recorded. The experiment was repeated with the same lengths of magnesium ribbon but different concentrations of the acid. The graph shows the time taken for the magnesium to react with different concentrations of this acid.

Use the graph to explain how the rate of this reaction changes as the concentration of hydrochloric acid increases.

(2)
* (c) Marble chips react with dilute hydrochloric acid to produce carbon dioxide gas. The rate of this reaction can be changed by changing the size of the marble chips. Describe experiments to investigate what effect using smaller marble chips has on the rate of this reaction.

(Total for Question 6 = 12 marks)