2016 Engineering Science

National 5

Finalised Marking Instructions

© Scottish Qualifications Authority 2016

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Engineering Science

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
(d) Full marks are always given for a correct final answer but where a candidate makes an error at an early stage in a multi-stage calculation, credit should normally be given for correct follow-on working in subsequent stages, unless the error significantly reduces the complexity of the remaining stages. The same principle should be applied in questions which require several stages of non-mathematical reasoning.
(e) All units of measurement will be presented in a consistent way, using negative indices where required (eg ms ${ }^{-1}$). Candidates may respond using this format, or solidus format $(\mathrm{m} / \mathrm{s})$ or words (metres per second), or any combination of these (eg metres/second).

Marking Instructions for each question

Section 1

Question		Expected Answer(s)	Max Mark	Additional Guidance
1.	Closed loop is self-monitoring and will adjust the output according to changing conditions	1	Descriptive response.	

Question		Expected Answer(s)	$\begin{array}{c}\text { Max } \\ \text { Mark }\end{array}$	Additional Guidance		
2.		$\begin{array}{l}\text { Fewer parts } \\ \text { Increased reliability } \\ \text { Simplified/faster assembly } \\ \text { Can be reprogrammed } \\ \text { Re-usable } \\ \text { Upgradable - system's features } \\ \text { can be quickly/easily changed } \\ \text { Reduced stock inventory (one } \\ \text { microcontroller circuit can be } \\ \text { repurposed) }\end{array}$	$\mathbf{2}$	$\begin{array}{l}1 \text { mark per each correct } \\ \text { descriptive response. }\end{array}$		
Accept - easier to fix mistakes					$\}$ Not smaller or cheaper on its own. \quad Not programmable	
:---						

Question		Expected Answer(s)	Max	Additional Guidance
4.	(a)		2	1 Mark for correct shuttle valve symbol. 1 Mark for all piping (port to port). If no shuttle drawn then ignore lack of T piece. Do not accept two pipes to $5 / 2$ actuator. Ignore pilot lines.
	(b)	Pilot	1	

Question		Expected Answer(s)	Max Mark	Additional Guidance
5.		Dimension(s) Force(s)	$\mathbf{2}$	Accept: Magnitude and direction/ angle of the forces (2 marks)

Question		Expected Answer(s)	$\begin{array}{c}\text { Max } \\ \text { Mark }\end{array}$	Additional Guidance	
6.	(a)	(i)	Idler	$\mathbf{1}$	
		(ii)	$\begin{array}{l}\text { It makes gear A and gear C turn in } \\ \text { the same direction (without } \\ \text { affecting the output speed). }\end{array}$	$\mathbf{1}$	Descriptive response
Accept change the (output)					
direction					
Not keep the direction the same					
on its own					

Question		Expected Answer(s)	Max Mark	Additional Guidance
7.		$\sigma=\frac{F}{A}$ $\sigma=\frac{5000}{1962}$ $=2.5 \mathrm{Nmm}^{-2}(2 \mathrm{sf})\left(2.55 \mathrm{Nmm}^{-2}\right)$ $\left(0.0025 \mathrm{kN} \mathrm{mm}^{-2}\right)$		1 mark for substitution 1 mark for correct answer from working with units $2.5 \mathrm{MPa}\left(\mathrm{MNm}^{-2}\right) 2548419 \mathrm{PA}$

Question		Expected Answer(s)	Max Mark	Additional Guidance		
8.	(a)	Acts as a switch	1	1 Mark.		
Accept:						
amplifying current						
turn on/switch on heater.					,	(b)
:---						

Question		Expected Answer(s)	Max Mark	Additional Guidance
9.		Chemical	1	

Section 2

Question		Expected Answer(s)	Max Mark	Additional Guidance
10.	(a)	Designing control circuits. Calculating values of components. Selecting the correct components to use. Produce a microcontroller program. Test circuits using computer simulation.	2	1 mark for each correct descriptive response. No mark for generic "developing" "creating" "circuit" or "electronics" on its own. Accept: calculate power supply/ motor values Building or wiring not be accepted without reference to prototyping
	(b)	$\begin{aligned} & 120+330=450 \Omega \\ & R_{T}=\frac{(R 1 \times R 2)}{(R 1+R 2)} \\ & R_{T}=\frac{(390 \times 450)}{(390+450)} \\ & R_{T}=210 \Omega(2 s f)(209 \Omega) \end{aligned}$	3	1 mark for series branch total (ignore units) Accept 3 resistors in parallel calculation-2 marks maximum 1 mark for substitution (allow FTE). 1 mark for answer from working with unit.
	(c)	$\begin{aligned} & V=I R \\ & 12=I \times 390 \\ & I=\frac{12}{390} \\ & I=0 \cdot 031 A(31 \mathrm{~mA} 2 \mathrm{sf}) \end{aligned}$	3	1 mark for substitution. 1 mark for transposition. 1 mark for answer from working with unit.
	(d)	$\begin{aligned} & \sigma=\frac{F}{A} \\ & 0 \cdot 42=\frac{310}{A} \\ & A=\frac{310}{0 \cdot 42} \\ & A=740 \mathrm{~mm}^{2} 2 s f\left(738 \mathrm{~mm}^{2}\right) \end{aligned}$	3	1 mark for substitution. 1 mark for transposition. 1 mark for answer from working with unit.

Question			Expected Answer(s)		Additional Guidance
11.	(a)	(i)	Items can be quickly produced thus saving time and money. Jobs will be created in the design and manufacture of the hardware used and that will produce wealth. Lower running costs (than other methods) Parts can be cheaper to print than to manufacture	1	Descriptive response relating to economic advantage. Jobs/employment descriptions need economic advantage. Not cheap on its own. Must be justified or a comparison
		(ii)	Initial setup/training/running/ consumables/maintenance costs. Loss of business/revenue for some companies. Parts can be slow/more expensive to manufacture	1	Descriptive response relating to economic disadvantages. Jobs/employment descriptions need economic disadvantages. Not more expensive on its own Do not accept the same point for (a)(i) and (ii) (max 1 mark)
	(b)		See below	3	"temperature sensor" 1 mark Accept: heat sensor, thermistor, thermocouple or thermostat. thermometer - 0 mark "control" - 1 mark Feedback loop from output arrow with an arrow head (anywhere) through sensor to enter control sub-system (anywhere) 1 mark

Question	Expected Answer(s)	Max Mark	Additional Guidance
(c)	If the feedback signal is greater than/equals the set level the control unit will switch off the heater. 2 marks If the feedback signal falls below the set level the control unit will switch the heater on. 2 marks	2	Feedback compared to set level 1 mark Switching of heater - 1 mark (switching action has to be specific, correct and related to the comparison) Not accept - if hot/cold switch heater off/on

Question	Expected Answer(s)	Max Mark	Additional Guidance
(d)	$\begin{aligned} & \text { Input speed } \times \text { input size }=\text { output } \\ & \text { speed } \times \text { output size } \\ & 1500 \times 16=\text { output speed } \times 48 \\ & \text { Output speed }=500 \mathrm{rev} \mathrm{~min} \\ & \text {-1 } \end{aligned} \text { Input speed } \mathrm{x} \text { input size }=\text { output } \begin{aligned} & \text { speed } \times \text { output size } \\ & 500 \times 12=150 \times \mathrm{D} \\ & \mathrm{D}=40 \text { teeth } \\ & \text { OR } \\ & V R=\frac{\text { input speed }}{\text { output speed }} \\ & V R=\frac{1500}{150} \\ & V R=10: 1 \\ & 10=\frac{48}{16} \times \frac{D}{12} \\ & D=\frac{10}{3} \times 12 \\ & D=40 \end{aligned}$	4	1 mark for substitution. 1 mark for answer, unit not required. 1 mark for substitution. 1 mark for answer from working. Ignore any unit. 1 mark for calculating velocity ratio 1 mark for substitution. 1 mark for transposition. 1 mark for answer from working with unit. Ignore any unit.

Question		Expected Answer(s)	Max Mark	Additional Guidance
12.	(a)	When a signal from the microcontroller actuates valve 1 , pilot air actuating valve 2 . This causes the piston to outstroke ...air flow (through the unidirectional restrictor and reservoir) creating a time delaywhen valve 3 is actuated the piston will then instroke.	3	1 mark for each descriptive statement. 1 mark - outstroke condition 1 mark - time delay 1 mark - instroke condition
	(b)	Cross shown on left cylinder pipe.	1	Accept on the left hand exhaust port.

Question	Expected Answer(s)	Max Mark	Additional Guidance
(c)		8	All pin numbers must be correct where applicable. - (pin) 0 on decision, feedback loop with yes/no and arrow. 1 mark - (pin) 2 on and off. 1 mark - all three delays 1 mark Accept PBASIC/C alternatives (pause 1500 / delay 1500) - (pin) 1 on and off. 1 mark - $x 3$ times decision with yes / no labelled. 1 mark - fixed loop with arrow to return point. 1 mark - Continuous loop with arrow. 1 mark - All symbols correct. 1 mark Credit given for a series of roar/ arm movement without a fixed loop. Ignore any additional steps including symbols used.

Question		Expected Answer(s)		Additional Guidance
13.	(a)	18 (kN)	1	Accept 17 kN to 19 kN Units not required
	(b)	$\begin{aligned} & \varepsilon=\frac{\Delta l}{l} \\ & 0.00030=\frac{\Delta l}{127} \\ & \Delta \mathrm{l}=0.00030 \times 127 \\ & \Delta \mathrm{l}=0.038 \mathrm{~m}(38 \mathrm{~mm}) \end{aligned}$	3	1 mark for substitution. 1 mark for transposition. 1 mark for answer from working with unit.
	(c)	Construction will result in heavy vehicles which may damage roads. Use of construction equipment will cause pollution and increase noise levels. Vehicles access up hillside to erect pylon damage wildlife and affect natural beauty.	2	One environmental explanation based response. One environmental cause (1 mark) and its effect (1 mark) No credit for generic cause based statements such as "during construction" / "construction site" Sound/noise to be taken as an effect and not a cause,
	(d)		3	Both NOT gates. 1 mark Both AND gates with correct connections. 1mark OR gate with correct connections. 1 mark

Question		Expected Answer(s)	Max	Additional Guidance
14.	(a)	$\begin{aligned} & \mathrm{E}_{\mathrm{e}}=\mathrm{ItV} \\ & \mathrm{E}_{\mathrm{e}}=13 \times 60 \times 230 \\ & \mathrm{E}_{\mathrm{e}}=180 \mathrm{~kJ}(2 \mathrm{sf}) \quad(179400 \mathrm{~J}) \end{aligned}$	2	1 mark substitution. 1 mark for answer from working with unit.
	(b)	$\begin{aligned} & \eta=\frac{E_{\text {out }}}{E_{\text {in }}} \\ & 0 \cdot 64=\frac{E_{\text {out }}}{180000} \\ & E_{\text {out }}=0 \cdot 64 \times 180000 \\ & E_{\text {out }}=120 \mathrm{~kJ}(2 \mathrm{sf})(115200 \mathrm{~J}) \end{aligned}$	3	1 mark substitution. Allow FTE from (a). 1 mark for transposition. 1 mark for answer from working with unit. (accept 114816J or 110 kJ 2 sf)
	(c)	Reduce the friction in the pump by lubricating all moving parts.	2	Explanation response. Cause-1 mark Effect-1 mark Reduce friction. 1 mark Lubricate moving parts. 1 mark Do not accept lubrication without named part
	(d)	Easier/cheaper/quicker/safer to design/test/modify the gear system without having to physically build it. Highlight errors without damage to components	1	Descriptive answers only. Easier/cheaper/quicker/safer must be qualified Not test/check gears on its own Not computer modelling based aspects such as fitting and assembly etc.

Question		Expected Answer(s)		Additional Guidance
15.	(a)	As the temparature decreases: .. the resistance of the thermistor increases ..Vin will increase. The transistor/relay will switch..... ... switching the 12 V circuit/ heater.	4	Voltage divider explanation maximum of 2 marks Transistor/relay switching maximum 1 mark 12 V circuit/heater circuit switching - maximum 1 mark Apply follow through error.
	(b)	Protect the transistor	2	Explanation response. Protection / route for back emf. 1 mark ..the transistor. 1 mark
	(c)	Allows the user to change the temperature required to activate the circuit.	1	Accept change the sensitivity.
	(d)	$\begin{aligned} & \frac{V 1}{V 2}=\frac{R 1}{R 2} \\ & \frac{0 \cdot 70}{V 2}=\frac{0 \cdot 84}{10 \cdot 0} \\ & V 2=\frac{0 \cdot 7}{0 \cdot 084} \\ & V=8 \cdot 3 V(2 s f) \end{aligned}$	3	1 mark substitution. 1 mark for transposition. 1 mark for answer from working with unit. Using ohms law also acceptable.

Question		Expected Answer(s)	Max Mark	Additional Guidance
16.	(a)	$\begin{aligned} & \Sigma C W M=\Sigma A C W M \\ & \left(R_{A} \times 3 \cdot 0\right)=(60 \cdot 0 \times 1 \cdot 5)+(4 \cdot 0 \times 7 \cdot 0) \\ & R_{A} \times 3 \cdot 0=90+28 \\ & R_{A}=\frac{118}{3 \cdot 0} \\ & R_{A}=39 \mathrm{kN}(2 s f)(39 \cdot 3 \mathrm{kN}) \end{aligned}$	3	1 mark substitution. (If R_{B} is calculated then 2 marks maximum. 1 mk transposition 1 mk final answer with unit.) 1 mark for transposition. 1 mark for answer from working with unit.
	(b)	$\begin{aligned} & \sum F_{\text {vertical }}=0 \quad \sum F_{\text {up }}=\Sigma F_{\text {down }} \\ & 39+R_{B}=60 \cdot 0+4 \cdot 0 \\ & R_{B}=25 \mathrm{kN}(2 \mathrm{sf}) \quad 24.7 \mathrm{kN} \end{aligned}$	2	1 mark substitution. Allow FTE 1 mark for answer from working with unit. Accept taking moments about A.
	(c)	D - Tension E - Compression	2	1 mark for each correct answer. (Accept Tie and Strut)
	(d)	Reducing/no fossil fuels being used This will result in the reduction/ no CO_{2} emissions/greehouse gasses.	2	Explain based responses relating to environmental impact Cause-1 mark Effect - 1 mark Cause: Reduction of fossil fuel usage. 1 mark Effect: Reduction of CO_{2} emissions 1 mark Do not accept pollution Gasses/emissions must be specific to CO_{2} or greenhouse

[END OF MARKING INSTRUCTIONS]

