Surname

Other Names

GCSE

4503/01

PHYSICS

PHYSICS 3 FOUNDATION TIER

P.M. MONDAY, 19 May 2014

1 hour

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	3			
2.	8			
3.	5			
4.	5			
5.	8			
6.	7			
7.	12			
8.	6			
9.	6			
Total	60			

Centre

Number

Candidate

Number

0

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

A list of equations is printed on page 2. In calculations you should show all your working. You are reminded that assessment will take into account the quality of written communication (QWC) used in your answer to question 9.

Equations

speed = $\frac{\text{distance}}{\text{time}}$	
$u = initial \ velocity$ $v = final \ velocity$ $t = time$ $a = acceleration$ $x = displacement$	$v = u + at$ $x = \frac{1}{2}(u + v)t$
momentum = mass × velocity	p = mv
pressure = $\frac{\text{force}}{\text{area}}$	$p = \frac{F}{A}$
	$T/K = \theta/\circ C + 273$
density = <u>mass</u> volume	$\rho = \frac{m}{V}$

SI multipliers

Prefix	Multiplier		
m	10 ⁻³	$\frac{1}{1000}$	
k	10 ³	1000	
М	10 ⁶	1000000	

(4503-01)

Examiner only 2. The block diagram below shows the life cycle of a star much larger than our Sun. (a) Draw lines from the names on the left to the correct box on the right to put them in order. [3] Red super giant Stage 1 Stage 2 Supernova Black hole Stage 3 Main sequence star Final stage The following diagram shows the major forces acting on a main sequence star. (b) Label the outward acting force. [1] gravitational force gravitational force gravitational force

(c) Choose words from the box below to complete the sentences that follow. Each word may be used **once, more than once or not at all**.

г							
	uranium	iron	fission	fusion	helium		
N	lain sequence	stars gene	rate energy b	y		of hydrogen	into
	Heavier elements are created when stars much larger than our						
S	Sun collapse. These heavier elements include which we use in						e in
our fission reactors on Earth. We only have elements heavier than							
b	because they are created during a supernova explosion.						

8

Examiner only

[4]

3. The diagram shows a transformer that is used to change the voltage in the National Grid.

5

Examiner only A star in its main sequence generates its energy by the nuclear reaction that is shown below.

4.

(a) State the number of helium atoms produced in this reaction. [1] (b) Name the particle that is written as ${}_{1}^{0}e$. [1] (c) An electron is written as ${}_{-1}^{0}e$. State how an electron is different from ${}_{1}^{0}e$. [1] (d) Describe what happens when ${}_{1}^{0}e$ and ${}_{-1}^{0}e$ collide with each other. [2]

© WJEC CBAC Ltd.

		11	
			Examiner only
(b)	(i)	Use information from the graph and the equation:	
		$a = \frac{v - u}{t}$	
		to calculate the acceleration. [2]	
		acceleration = m/s ²	
	(ii)	Use information from the graph and the equation:	
		$x = \frac{1}{2}(u+v)t$	
		to calculate the distance that the hammer fell in the first 4s . [2]	
		distance = m	
(C)	lf a fe why.	eather had fallen to the ground, the equations in <i>(b)</i> could not be used. Give a reason [1]	
	wity.	[1]	
•••••			
			7

(4503-01)

[2]

7. A balloon is filled with 2.0 m³ of helium and released. The following table shows data for the balloon as it rises.

Height of balloon above the ground (km)	Volume of balloon (<i>V</i>) (m ³)	Helium pressure (p) (kN/m²)	<i>рV</i> (kN m)
0	2.0	100	200
2	2.4	80	
4	3.0	60	180
6	3.6	50	180
8	4.4	40	176
10	5.8	30	174
12	8.1		162

⁽a) (i) **Complete** the table.

Use the data in the table to plot a graph of volume against height of the balloon on the grid opposite.
 [3]

(c) The volume of the balloon is also affected by changes in temperature.
 (i) State how a decrease in temperature affects the volume of the balloon.
 (ii) Give a reason for your answer in terms of molecules.

TURN OVER FOR THE LAST QUESTION

Turn over.

END OF PAPER