

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL CHEMISTRY – UNIT 4 1410U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL CHEMISTRY

UNIT 4 - ORGANIC CHEMISTRY AND ANALYSIS

SUMMER 2022 MARK SCHEME

GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only
ecf = error carried forward
bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	Question	Marking dataile			Marks a	vailable		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1		C=C at 1620-1670 cm ⁻¹ will identify pent-1-ene		1		1		
2		but-1-ene / but-2-ene / methylpropene correct names are needed here		1		1		1
3		CI CO + HCI		1		1		
4		award (1) for any of following H Br H Br H			1	1		
5		O_2N NH_2		1		1		

	Ques	4ian	Mayking dataila			Marks a	vailable		
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
6	(a)		nucleophilic addition	1			1		
	(b)		CH ₃ CH ₃ CH ₃ HO C H		1		1		
7	(a)	(i)	CH_3 — CH_2 — CH_2 — CH_3 —	1			1		1
		(ii)	O OH			1	1		
	(b)		all the protons are in <u>equivalent environments</u> and the spectrum will consist of <u>one singlet/peak</u>			1	1		
			Section A total	2	5	3	10	0	2

Section B

	0	4!		Mauking dataila			Marks a	vailable		
	Ques	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a)	(i)		nickel / platinum	1			1		
		(ii)	I	cyclohexanol contains an O—H bond at 3200 to 3550 cm ⁻¹ / cyclohexanol contains a C—O bond at 1000 to 1300 cm ⁻¹ (1) cyclohexanone contains a C=O bond at 1650 to 1750 cm ⁻¹ (1)	1					
				award (1) for partial answer to both points e.g. cyclohexanone gives peak at 1700 and cyclohexanol gives peak at 3300	'			2		
			II	cyclohexanol, $C_6H_{11}OH$ $M_r = 100.12 \% oxygen = \frac{16 \times 100}{100.12} = 15.98 (1)$		1				
				cyclohexanone, $C_6H_{10}O$ $M_r = 98.10$ % oxygen = $\frac{16 \times 100}{98.10}$ = 16.31 (1) these two percentage figures are too close for accurate determination of the proportions present (1)		1	1	3		
			III	% by volume = $\frac{49 \times 100}{84}$ = 58	1			1		
		(iii)		acidified dichromate / Cr ₂ O ₇ ²⁻ , H ⁺ acidified manganate(VII) / MnO ₄ ⁻ , H ⁺	1			1		1

Question	Marking datails			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2		2		
(c) (i)	the polymer is made from an alkene / the monomer has a C=C bond / no additional compound is formed (when polymerisation occurs) (1) award (1) for any of following a polyester contains a group in the chain there is no ester linkage a polyester is made from an alcohol and a carboxylic acid / acid chloride			2	2		
(ii)	mass of polymer used = $\frac{150}{300}$ = 0.5 g (1) $M_{\rm r} = \frac{0.50}{4.0 \times 10^{-6}}$ = 125 000 (1)		1	1	2	1	
	Question 8 total	5	5	4	14	1	1

	0	-4i-n		Maulaina ala	taila			Marks a	available	•	
	Que	stion		Marking de	etalis	AO1	AO2	AO3	Total	Maths	Prac
9	(a)	(i)	(concentrated) nitric	acid and (concentra	ted) sulfuric acid	1			1		
		(ii)	tin/iron and (concent	ated) hydrochloric	acid	1			1		
		(iii)	separation problems too close together accept other sensible		rature of the three isomers are			1	1		
		(iv)	Reagent Observation	FeCl ₃ purple colour	NaHCO ₃ no change	1	1		2		2
	(b)		→ 5 C + 2 CO +	N ₂ + 3 H ₂ O			1		1		
	(c)		award (1) for curly ar other award (1) for all three	rows – must have a	+ HCI + AICI ₃	1	1		2		

0	-41	Maulina dataila			Marks a	available	!	
Que	estion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(d)	(i)	$n(benzene) = \frac{234 \times 1000}{78} = 3000 (1)$		1				
		n(phenol) at 86% yield = $\frac{3000 \times 86}{100}$ = 2580				2	1	
		mass of phenol = $\frac{2580 \times 94}{1000}$ = 243 kg (1)		1				
	(ii)	a species with an unpaired electron	1			1		
	(iii)	award (1) for any radical e.g. •CH ₃ •CI •CH ₂ CI		1		1		1
(e)		award (1) for either of following						
		solution remains yellow / orange no more white precipitate is formed			1	1		
(f)	(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		1		
	(ii)	CH₃COCI will react (preferentially) with the NaOH / water			1	1		1
	(iii)	pyridine acts as a base / removes H ⁺ (1)						
		as its nitrogen atom has a lone pair (of electrons) (1)			2	2		
		Question 9 total	5	7	5	17	1	4

	Overtion	Maukina dataila	Marks available							
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac		
10	(a)	Indicative content molar mass is 72 g mol⁻¹ of which 50.0% is carbon ⇒ each molecule of compound G must contain 3 carbon atoms this leaves a mass of 36 ⇒ must be 2 oxygen atoms and 4 hydrogen atoms as 1 oxygen atom and 20 hydrogen atoms is not feasible	AUT	AO2	AU3	Total	Matris	Prac		
		it reacts with Tollens reagent ⇒ must be an aldehyde / have the CHO group it gives a yellow solid with alkaline iodine ⇒ must have a CH ₃ —C group or a CH ₃ —C H group only 2 hydrogen environments, CH ₃ group (at ~2.2) and CHO group (at ~9.4) ⇒ suggests CH ₃ —C O	2	2	2	6		2		
		reduction of this compound gives a diol with molar mass 76 g mol ⁻¹ H H H ₃ C — C — C — OH CH H OH H								

Question	Marking details
	5-6 marks All the information has been used including the NMR spectrum; correct structure given The candidate constructs a relevant, coherent and logically structured account including key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary is used accurately throughout.
	3-4 marks Most of the information has been used correctly but there are some omissions; some correct features in the structure The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.
	1-2 marks Some of the information has been used but there are many omissions The candidate attempts to link relevant points from the indicative content. Coherence is limited by omission and/or inclusion of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary.
	0 marks The candidate does not make any attempt or give an answer worthy of credit.

Ques	tion		Marking dataila			Marks a	vailable		
Ques	tion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)			$E_1 \times \lambda_1 = E_2 \times \lambda_2 \qquad (1)$ $\lambda_2 = \frac{E_1 \times \lambda_1}{E_2} = 267 \text{ kJ mol}^{-1} \qquad (1)$		1	1	2	1	
			alternative method						
			constant = $E \times \lambda = 1.2 \times 10^5$ (1)						
			$E = \frac{1.2 \times 10^5}{450} = 267 \text{ kJ mol}^{-1}$ (1)						
(c)	(i)	I	Na ⁺ O ⁻ O NH ₂ accept if Na ⁺ not included			1	1		
		II	the attacking reagent / OH ⁻ is a nucleophile(1) lone pair on N becomes part of delocalised system / C—N bond is stronger when directly attached to ring (1)		2		2		

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(ii)	H_2N O				2		
	Question 10 total	2	7	4	13	1	2

	0	estion		Mauking dataila			Marks a	vailable		
	Que	estion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
11	(a)	(i)		chromatogram drawn correctly with spot at 6 cm mark		1		1		1
		(ii)		HO O-	1			1		
		(iii)		the polar structure / OH group is a small part of the overall molecule so hydrogen bonding is at a 'minimum'			1	1		
		(iv)	I	24500 cm³ of nitrogen from 181 g of tyrosine (1) 1 cm³ of nitrogen from $\frac{181}{24500}$ g of tyrosine 147 cm³ of nitrogen from 147 × $\frac{181}{24500}$ = 1.09 g(1) accept alternative methods e.g. n = $\frac{pV}{RT}$ = 0.006 (1) mass = 0.006 × 181 = 1.09g (1) e.g. 1 mol tyrosine gives 1 mol N ₂ n(N ₂) = $\frac{1.09}{181}$ = 6 × 10 ⁻³ (1) V = $\frac{nRT}{p}$ = 147cm³ (1)		2		2	1	

Questi	lan	Moulting dataile			Marks a	available		
Questi	ion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	II	award (1) for any of following not all the nitrogen was collected impure sample of tyrosine erroneous starting mass incomplete reaction			1	1		1
(b) (i))	$M_{\rm r}$ of calcium butane-1,4-dioate = 156 (1) atom economy = $\frac{156}{(74+180)}$ × 100 = 61 (1)	1	1		2		
(ii)	i)	moles of calcium butane-1,4-dioate = $\frac{41.2}{156}$ = 0.264 moles of H ₂ SO ₄ needed = 0.264 (1) volume of H ₂ SO ₄ needed = $\frac{0.264 \times 1000}{2.5}$ = 106 cm ³ (1)		2		2	1	
(c)		H C=C H award (1) for recognising the equivalence of three pairs of C atoms can be labelled on structure or in statement e.g. both CH ₃ carbon atoms are equivalent, both 'end' carbon atoms of double bonds are equivalent and both 'internal' carbon atoms of double bonds are equivalent		1	1	2		
		Question 11 total	2	7	3	12	2	2

Question				Mouldon detaile	Marks available						
	Que	Stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac	
12	(a)	(i)		compound A does not absorb effectively in the UVA region			1	1			
		(ii)		C ₁₀ H ₁₀ O ₃		1		1			
		(iii)	I	structural isomerism is concerned with the position of atoms within a molecule (1) stereoisomerism is concerned with the positions that the atoms take up in space (1)	2			2			
				neutral answers – reference to mirror images, chiral centres, E/Z							
			II	$CH_{3}O \longrightarrow CH = CH - C - O - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2}$ $CH_{2} - CH_{3}$	1			1			
			Ш	it does not rotate the plane of plane polarised light		1		1			
			IV	R $C=C$ R C R $C=C$ R C R	2			2			

Question	Marking details	Marks available						
Question		AO1	AO2	AO3	Total	Maths	Prac	
(b) (i)	electrophilic addition	1			1			
(ii)	3 mol of I_2 needed for 1 mol of the unsaturated oil moles of unsaturated oil = $\frac{0.0128}{3}$ = 0.00427 (1) mass of unsaturated oil = 0.00427 × 885 = 3.78 g percentage of unsaturated oil = $\frac{3.78}{8.41}$ × 100 = 45% (1)		2		2	1		
(iii)	3 NaOH (1) 3 C ₁₇ H ₃₃ COONa (1)		1	1	2			
(iv)	propane-1,2,3-triol		1		1			
	Question 12 total	6	6	2	14	1	0	

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	2	5	3	10	0	2
8	5	5	4	14	1	1
9	5	7	5	17	1	4
10	2	7	4	13	1	2
11	2	7	3	12	2	2
12	6	6	2	14	1	0
Totals	22	37	21	80	6	11