GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL
CHEMISTRY - UNIT 4
1410U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL CHEMISTRY

UNIT 4 - ORGANIC CHEMISTRY AND ANALYSIS

SUMMER 2022 MARK SCHEME

GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf = error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Section B

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)			nickel / platinum	1			1		
		(ii)	1	cyclohexanol contains an O-H bond at 3200 to $3550 \mathrm{~cm}^{-1}$ / cyclohexanol contains a C-O bond at 1000 to $1300 \mathrm{~cm}^{-1}$ (1) cyclohexanone contains a $\mathrm{C}=\mathrm{O}$ bond at 1650 to $1750 \mathrm{~cm}^{-1}$ (1) award (1) for partial answer to both points e.g. cyclohexanone gives peak at 1700 and cyclohexanol gives peak at 3300	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			2			
			11	cyclohexanol, $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$ $\begin{equation*} M_{r}=100.12 \quad \% \text { oxygen }=\frac{16 \times 100}{100.12}=15.98 \tag{1} \end{equation*}$ cyclohexanone, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ $\begin{equation*} M_{r}=98.10 \quad \text { \% oxygen }=\frac{16 \times 100}{98.10}=16.31 \tag{1} \end{equation*}$ these two percentage figures are too close for accurate determination of the proportions present (1)		1 1	1	3			
			III	$\%$ by volume $=\frac{49 \times 100}{84}=58$	1			1			
		(iii)		acidified dichromate $/ \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}^{+}$ acidified manganate(VII) / $\mathrm{MnO}_{4}^{-}, \mathrm{H}^{+}$	1			1		1	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)			 (1) (1) or		2		2		
(c)	(i)	the polymer is made from an alkene / the monomer has a $\mathrm{C}=\mathrm{C}$ bond / no additional compound is formed (when polymerisation occurs) (1) award (1) for any of following a polyester contains a group in the chain there is no ester linkage a polyester is made from an alcohol and a carboxylic acid / acid chloride			2	2			
	(ii)	mass of polymer used $=\frac{150}{300}=0.5 \mathrm{~g}$ $\begin{equation*} M_{\mathrm{r}}=\frac{0.50}{4.0 \times 10^{-6}}=125000 \tag{1} \end{equation*}$		1	1	2	1		
		Question 8 total	5	5	4	14	1	1	

Question			Marking details			Marks available								
			AO1	AO2	AO3	Total	Maths	Prac						
9	(a)	(i)				(concentrated) nitric acid and (concentrated) sulfuric acid			1			1		
		(ii)	tin/iron and (concentrated) hydrochloric acid			1			1					
		(iii)	separation problems - the boiling temperature of the three isomers are too close together accept other sensible answers					1	1					
		(iv)	Reagent Observation	$\frac{\mathrm{FeCl}_{3}}{\text { purple colour }}$	$\begin{gathered} \hline \mathrm{NaHCO}_{3} \\ \hline \text { no change } \end{gathered}$	1	1		2		2			
	(b)		$\rightarrow 5 \mathrm{C}+2 \mathrm{CO}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$				1		1					
	(c)		award (1) for curly arrows - must have arrow into benzene ring and one other award (1) for all three products			1	1		2					

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(d)	(i)		$\begin{aligned} & n(\text { benzene })=\frac{234 \times 1000}{78}=3000(1) \\ & n(\text { phenol }) \text { at } 86 \% \text { yield }=\frac{3000 \times 86}{100}=2580 \\ & \text { mass of phenol }=\frac{2580 \times 94}{1000}=243 \mathrm{~kg} \end{aligned}$		1 1		2	1	
	(ii)	a species with an unpaired electron	1			1			
	(iii)	award (1) for any radical e.g. $-\mathrm{CH}_{3}$ -CI $\cdot{ }^{-} \mathrm{CH}_{2} \mathrm{Cl}$		1		1		1	
(e)		award (1) for either of following solution remains yellow / orange no more white precipitate is formed			1	1			
(f)	(i)			1		1			
	(ii)	$\mathrm{CH}_{3} \mathrm{COCl}$ will react (preferentially) with the $\mathrm{NaOH} /$ water			1	1		1	
	(iii)	pyridine acts as a base / removes H^{+}(1) as its nitrogen atom has a lone pair (of electrons) (1)			2	2			
		Question 9 total	5	7	5	17	1	4	

| Question | | Marking details |
| :--- | :--- | :--- | :--- |
| | | 5-6 marks
 All the information has been used including the NMR spectrum; correct structure given
 The candidate constructs a relevant, coherent and logically structured account including key elements of the indicative
 content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary is used
 accurately throughout.
 3-4 marks
 Most of the information has been used correctly but there are some omissions; some correct features in the structure
 The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is
 evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.
 1-2 marks
 Some of the information has been used but there are many omissions
 The candidate attempts to link relevant points from the indicative content. Coherence is limited by omission and/or inclusion
 of irrelevant material. There is some evidence of appropriate use of scientific conventions and vocabulary.
 0 marks
 The candidate does not make any attempt or give an answer worthy of credit. |

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(b)				$\begin{align*} & E_{1} \times \lambda_{1}=E_{2} \times \lambda_{2} \tag{1}\\ & \lambda_{2}=\frac{E_{1} \times \lambda_{1}}{E_{2}}=267 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{align*}$ alternative method $\begin{align*} & \text { constant }=E \times \lambda=1.2 \times 10^{5} \tag{1}\\ & E=\frac{1.2 \times 10^{5}}{450}=267 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{align*}$		1	1	2	1	
(c)	(i)	I	 accept if Na^{+}not included			1	1			
		11	the attacking reagent / OH^{-}is a nucleophile(1) Ione pair on N becomes part of delocalised system / $\mathrm{C}-\mathrm{N}$ bond is stronger when directly attached to ring (1)		2		2			

Question		Marking details			Marks available								
		A01	AO2	AO3	Total	Maths	Prac						
	(ii)				correct formulae (1) balancing (1)		$+2 \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$				2		
				Question 10 total	2	7	4	13	1	2			

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)			chromatogram drawn correctly with spot at 6 cm mark		1		1		1
		(ii)			1			1			
		(iii)		the polar structure / OH group is a small part of the overall molecule so hydrogen bonding is at a 'minimum'			1	1			
		(iv)	1	$24500 \mathrm{~cm}^{3}$ of nitrogen from 181 g of tyrosine (1) $1 \mathrm{~cm}^{3}$ of nitrogen from $\frac{181}{24500} \mathrm{~g}$ of tyrosine $147 \mathrm{~cm}^{3}$ of nitrogen from $147 \times \frac{181}{24500}=1.09 \mathrm{~g}(1)$ accept alternative methods e.g. $\mathrm{n}=\frac{p V}{R T}=0.006$ (1) $\begin{equation*} \text { mass }=0.006 \times 181=1.09 \mathrm{~g} \tag{1} \end{equation*}$ e.g. 1 mol tyrosine gives $1 \mathrm{~mol} \mathrm{~N}_{2}$ $\begin{align*} & \mathrm{n}\left(\mathrm{~N}_{2}\right)=\frac{1.09}{181}=6 \times 10^{-3} \\ & \mathrm{~V}=\frac{n R T}{p}=147 \mathrm{~cm}^{3} \tag{1} \end{align*}$		2		2	1		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
		II		award (1) for any of following not all the nitrogen was collected impure sample of tyrosine erroneous starting mass incomplete reaction			1	1		1
(b)	(i)		M_{r} of calcium butane-1,4-dioate $=156(1)$ $\begin{equation*} \text { atom economy }=\frac{156}{(74+180)} \times 100=61 \tag{1} \end{equation*}$	1	1		2			
	(ii)		moles of calcium butane-1,4-dioate $=\frac{41.2}{156}=0.264$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed $=0.264$ volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed $=\frac{0.264 \times 1000}{2.5}=106 \mathrm{~cm}^{3}$		2		2	1		
(c)			 there are 3 peaks (1) award (1) for recognising the equivalence of three pairs of C atoms can be labelled on structure or in statement e.g. both CH_{3} carbon atoms are equivalent, both 'end' carbon atoms of double bonds are equivalent and both 'internal' carbon atoms of double bonds are equivalent		1	1	2			
			Question 11 total	2	7	3	12	2	2	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)			compound \mathbf{A} does not absorb effectively in the UVA region			1	1		
		(ii)		$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}$		1		1			
		(iii)	1	structural isomerism is concerned with the position of atoms within a molecule (1) stereoisomerism is concerned with the positions that the atoms take up in space (1) neutral answers - reference to mirror images, chiral centres, E/Z	2			2			
			II		1			1			
			III	it does not rotate the plane of plane polarised light		1		1			
			IV		2			2			

UNIT 4: ORGANIC CHEMISTRY AND ANALYSIS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	2	5	3	10	0	2
8	5	5	4	14	1	1
9	5	7	5	17	1	4
10	2	7	4	13	1	2
11	2	7	3	12	2	2
12	6	6	2	14	1	0
Totals	22	37	21	80	6	11

