GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL
PHYSICS - UNIT 4 1420U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL PHYSICS

UNIT 4 - FIELDS AND OPTIONS
SUMMER 2022 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (except for the extended response question).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.
Extended response question
A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
bod = benefit of doubt
```

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1	(a)	(i)		Valid method e.g. $B=\mu_{0} n I$ to calculate B or I or n or μ_{0} (1) Gives $B=0.0606$ [T] or $I=7.13$ [A] or $n=26972$ or $\mu_{0}=2.51 \times 10^{-6}(1)$ Correct conclusion based on calculation (with ecf) e.g. Lindsay wrong (if B or I calculated), Lindsay wrong because μ_{0} too large or real value is 1.26×10^{-6} or Lindsay wrong because n value too large or real value is 13500 (allow ecf on $n=27000$ here) (1) i.e. Calculating $B=0.121[T]$ followed by Lindsay correct is 2 marks ($1^{\text {st }}$ and $3^{\text {rd }}$ marks)			3	3	1	
		(ii)	Iron / ferromagnetic / steel core Accept increase permeability Don't accept increase permeability of free space	1			1			
	(b)	(i)	Use of $B A N \cos \theta$ (1) Correct answer $=0.046 \mathrm{~Wb}$ or Wb turn or $\mathrm{T} \mathrm{m}{ }^{2}{ }^{* *}$ unit mark** (1)	1	1		2	1		
		(ii)	Max when $\theta=90$ because flux changing / cutting at max rate (accept cutting most lines or similar for max rate) (1) When $\theta=0$ no emf because flux max or no cutting or rate of change is zero (1) Alternative for $\mathbf{2}^{\text {nd }}$ mark Min when $\theta=-90,270$ because flux changing / cutting in opposite direction (1) Allow 1 mark if both angles are correct with no explanation Allow 1 mark if angles are wrong but both explanations are correct (must refer to flux changing or cutting but no need to insist on "rate")		2		2			
			Question 1 total	2	3	3	8	2	0	

Questio		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
2	(a)		At least 4 field lines are radial and symmetrical (1) At least 2 equipotentials are circles / spheres (1) Out of positron and into anti-neutron (1)	3			3		
	(b)	Indicative content: Differences 1. electric fields - charges \& grav fields - masses (or force per unit mass, force per unit charge or forces between charges \& masses) 2. e-fields - into \& out, g-fields only into (direction point - also accept grav forces only attractive, e-forces attractive \& repulsive) 3. Gravity is far weaker (on small scale) OR electrical negligible on large scale (i.e. scale point) 4. E potential work done per unit charge \& G work done per unit mass 5. E-fields depend on permittivity OR g-fields depend on dark matter Similarities 1. Same shape field (for point/spherical masses/charges). Note: this point is different from the same shape graph which is the next point. 2. inverse square law (applies to both) 3. Both fields lead to (concept of) PE 4. Potential or PE is inversely proportional to distance 5. Both fundamental force laws 6. Both have scalar fields OR both have vector fields (or both!) 7. Anything to do with exchange particles (photon, gluon, bosons) NOTE: some differences can be viewed as similarities and vice versa e.g. energy per unit charge and energy per unit mass could be considered a similarity. Also, the different exchange particles could be considered a difference.	6			6			

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
	5-6 marks Similarities and differences between electric and gravitational fields covered comprehensively. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks Similarities or differences between electric and gravitational fields covered comprehensively or limited description of both. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks Limited description of either the similarities or the differences. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.						
	Question 2 total	9	0	0	9	0	0

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
	Award 3 marks for: Yes it gets there with 16.5 / 18 eV of KE (with no reasoning) Yes it gets there with $2.88 / 2.64 \times 10^{-18} \mathrm{~J}$ of KE (with no reasoning) Yes it gets there with a speed of $2.5 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ (with no reasoning) Award 2 marks for: Yes it gets there because the force due to -2.4 nC always repels Yes because acceleration left is greater than acceleration right Award 1 mark for: Yes / don't know / No because positive charges provide force to right at the end.						
	Question 3 total	3	7	4	14	8	0

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)			Substitution into: $C=\frac{\varepsilon_{0} A}{d}$ Correct answer $=1.24 \mathrm{n}[\mathrm{F}]$	1	1		2	1	
	(b)	(i)	Combining $0.5 Q V$ and $Q=C V$ (or using $0.5 C V^{2}$) (1) Correct answer $=20[\mathrm{~V}]$ (1)		2		2	2		
		(ii)	2 capacitors in series all in parallel with another Allow 1 mark for Subtract a mark if the symbol for capacitor is wrong			2	2	2		

Question		Marking details	Marks available						
		AO1	AO2	AO3	Total	Maths	Prac		
(c)	(i)		Either opposite charges or attractive force [on plates]		1		1		
	(ii)	Either work done (1) and conservation of energy applied (or implied) (1) OR energy $=\frac{1}{2} \frac{Q^{2}}{C}(1)$ and C decreases (1) OR $\frac{Q}{V}=\frac{\varepsilon_{0} A}{d}$ so $V \propto d$ (1) $E=\frac{1}{2} Q V$ hence correct (1) OR energy stored in field (1) field has greater volume (1) OR increased the potential energy (1) Due to attractive force (1)		2		2			
	(iii)	2 or 3 valid equations used e.g. $\frac{1}{2} \frac{Q^{2}}{C}$ and $C=\frac{\varepsilon_{0} A}{d}$ (1) Convincing working leading to $\frac{1}{2} \frac{Q^{2} d}{\varepsilon_{0} A}$ (if they quote the 2 equations above then simply writing the equation is acceptable) (1)		2		2	2		
	(iv)	Work $=$ force \times distance quoted (1) Hence $F=\frac{1}{2} \frac{Q^{2}}{\varepsilon_{0} A}$ or distance $=d$ and Bethan correct OR Bethan wrong at large separations or when $d=0$ OR good conclusion well argued (1)			2	2	1		
		Question 4 total	1	8	4	13	8	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
5	(a)	(i)		KE + gravitational PE $=0$ \& context explained briefly (also accept $\mathrm{KE}=$ gravitational PE and context) (1) Minimum context = conservation of energy or mention of galaxy or spherical universe or uniform universe or cosmological principle or explaining why $r=D$ or explaining what the mass of the sphere is (accept whole universe or part and mass inside) Reference to universe nor expanding now loses $1^{\text {st }}$ mark $v=H_{0} D$ substituted for $v(1)$ mass $=$ density \times volume of sphere (1) Algebra set out clearly (1)	4			4	3	
		(ii)	Correct substitution into formula (gives 8.66×10^{-27}) (1) Dividing by 1.66×10^{-27} (or 5.2 or 5.22 seen) OR $5 u=8.3 \times 10^{-27}(1)$	1	1		2	1		
	(b)	(i)	Halfway between or correct substitutions into C of M equation leading to 1×10^{11} or simply 1×10^{11} [m]		1		1			
		(ii)	Substitution into period equation (1) $9.73 \times 10^{6} \mathrm{~s}$ (allow 1 mark for 13.8×10^{6} OR $4.87 \times 10^{6} \mathrm{OR}$ 3.44×10^{6}) (1)	1	1		2	2		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(iii)		Use of $v=\frac{2 \pi r}{T \text { ecf }}$ or equivalent with $v=\omega r$ and $\omega=\frac{2 \pi}{T}$ (1) (expect $65000 \mathrm{~ms}^{-1}$) Use of Doppler equation (1) Correct answer $=0.0934 \mathrm{~nm}$ (accept 1sf) (1) Note: ecf on previous values gives $0.187 \mathrm{~nm}, 0.264 \mathrm{~nm}$ and 0.066 nm (for full marks unless another clear mistake seen) Allow 2 marks max if d used instead of r (gives 0.187 nm) Allow 1 mark max if $\frac{1}{2} m v^{2}=\frac{G M m}{r}$ (also gives 0.187 nm)	1 1	1		3	3	
(c)		Centre of mass is nearer more massive star (1) Which will give a larger field OR but must be nearer smaller star for fields to match (1) Accept equivalent reverse argument		2		2	2		
(d)	(i)	Force [due to both stars] are always equal [and opposite] Accept this is the point where the field is zero Accept masses of equal mass and distance either side		1		1			
	(ii)	Force due to black hole is $4 \times$ greater or 4.17×10^{30} [N$]$ (1) Also force from other star (gives factor 5) or $1.04 \times 10^{30}[\mathrm{~N}]$ (1)		2		2	1		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(iii)		Increasing v increases redshift OR linking orbital speed to redshift (can be implied by good answers) (1) Correct realisation that factor is $\sqrt{5}$ or that v^{2} proportional to force (this implies the $1^{\text {st }}$ mark) (1) Joseff is wrong (based on some valid physics) (1) e.g. red shift increases with orbital speed but they aren't proportional (force and speed) so Jo is wrong (this gets 2 marks $-1^{\text {st }}$ and $3^{\text {rd }}$) Also accept for 2 marks: Red shift increases with orbital speed and orbital speed is proportional to force, so Jo is right Also accept calculations: Expected $v=144000 \mathrm{~m} \mathrm{~s}^{-1}$ (1) Red shift $=0.21 \mathrm{n}[\mathrm{m}]$ (1) Joseff is wrong (1)			3	3	2	
(e)		[More] experiments involving Higgs [decay] (1) Results [need to be] in agreement with theory (1)			2	2			
		Question 5 total	8	9	5	22	12	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
6	(a)	(i)		Electrons move at right angles to B-field OR LHR mentioned OR accept $B q v$ or $B I l$ force (anything to do with magnetic force acting on electrons) (1) Force towards back face or shown clearly in diagram (1) (-ve) charge build (up on back face) (1) Electric field hence voltage (ignore "inducing" = neutral) OR accept equilibrium when mag force = electric force OR accept charge build-up clearly linked to Hall voltage (1)		4		4		4
		(ii)	$E e=B q v$ or similar seen e.g. $E q=B I l$ or conservation of energy stated (1) $E=\frac{V}{d}$ substituted $\mathbf{O R} E=\frac{V}{d}$ and $q=I t$ and $v=\frac{l}{t}$ substituted or $V q=B q v d$ i.e. conservation of energy applied (1) Algebra seen to give correct answer (1)	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
		(iii)	Any 3 numbers substituted to obtain the $4^{\text {th }}$ (1) Correct answer $4^{\text {th }}$ number \& conclusion seen (1) $\left(7.26 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}\right.$ is correct drift velocity) 5.4 mm is calculated d, 65.5 nV is calculated Hall pd, 0.187 T is calculated B-field)			2	2	2	2	
		(iv)	Rearrangement of $I=n$ Ave $\left(n=\frac{I}{A v e}\right) \mathbf{O R} V_{\mathrm{H}}=\frac{B I}{n e t}$ known Correct area method i.e. $5.2 \times 0.4\left(\times 10^{-6}\right) \mathbf{O R} n=\frac{B I}{V_{\mathrm{H}} e t}(1)$ Correct answer ($3.28 \times 10^{28} \mathrm{~m}^{-3}$) OR 3.4×10^{28} if they use $0.07 \mathrm{~mm} \mathrm{~s}^{-1}$) (beware ecf may be available for a candidate that uses a previously penalised value instead of the given values)(1)		3		3	3	3	

Questio	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(b)	$1^{\text {st }}$ mark - could be either gold or silver (both required for the mark) $2^{\text {nd }}$ mark either: Inside range or reference to uncertainty or range is 5.66-6.04 or check the colour of the metal			2	2		2
	Question 6 total	1	9	4	14	7	11

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	2	3	3	8	2	0
2	9	0	0	9	0	0
3	3	7	4	14	8	0
4	1	8	4	13	8	0
5	8	9	5	22	12	0
6	1	9	4	14	7	11
TOTAL	24	36	20	80	37	11

