GCE AS MARKING SCHEME

SUMMER 2022

AS
 CHEMISTRY - UNIT 1 2410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS

SUMMER 2022 MARK SCHEME

GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
bod = benefit of doubt
```

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question		Marking details		Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
6.	(a)		${ }^{231} \mathrm{Th}$			1		1		
	(b)	$1 / 16^{\text {th }}$			1		1	1		
7.		$\begin{align*} & \mathrm{n}\left(\mathrm{SO}_{2}\right)=\frac{9.1}{64.1}=0.142 \\ & 0.142 \times 40.1=5.69 / 5.7 \mathrm{~g} \tag{1} \end{align*}$			2		2	1		
			Section A total	3	7	0	10	3	0	

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
	(vi)			metals consist of a regular arrangement / lattice of metal cations surrounded by a 'sea' of delocalised electrons there are electrostatic forces of attraction between them (1) first two marks can be obtained from suitable diagram	3			3		
(b)	(i)	1	white precipitate	1			1		1	
		II	colourless solution / no observable change	1			1		1	
	(ii)		$\begin{aligned} & \mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s}) \\ & \text { accept } \mathrm{Mg}^{2+} \text { instead of } \mathrm{Cd}^{2+} \\ & \text { accept } \mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CdSO}_{4}(\mathrm{aq}) \end{aligned}$ accept incorrect state symbols for products if consistent with observations in (b)(i)		1		1			
			Question 8 total	10	4	0	14	0	2	

Question	Marking details		Marks available					
			A01	AO2	AO3	Total	Maths	Prac
(d)	$\begin{equation*} \text { moles } \mathrm{NaCl}=\frac{15 \times 10^{6}}{58.5}=2.56 \times 10^{5} \tag{1} \end{equation*}$			1				
	$\begin{align*} & \text { moles } \mathrm{Na}_{2} \mathrm{CO}_{3}=1.28 \times 10^{5} \\ & \text { mass } \mathrm{Na}_{2} \mathrm{CO}_{3}=1.28 \times 10^{5} \times 106=13568000 \mathrm{~g} \\ & \text { mass } \mathrm{Na}_{2} \mathrm{CO}_{3}=1.36 \times 10^{4} \mathrm{~kg} \quad(1) \tag{1}\\ & \text { final answer must be given to } 3 \text { sig figs } \end{align*}$	(1)		1	1	3	3	
		Question 9 total	3	4	5	12	5	0

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10.	(a)			Indicative content Elements and water - reactivity increases down both groups - both potassium and calcium metals react with water to give the hydroxide and hydrogen - Group 1 metals react more vigorously - Group 1 metals lose only one electron while Group 2 metals lose two electrons / Group 1 metals form cations easier than Group 2 metals - potassium melts into a ball and catches fire/lilac flame - calcium produces a steady stream of bubbles/cloudy white solution forms - $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$ - $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ Carbonates - Group 1 and Group 2 carbonates show different properties - Group 1 carbonates are soluble, Group 2 carbonates are insoluble 5-6 marks Comparison of similarities/differences, description of reactions and appropriate equations The candidate constructs a relevant, coherent and logically structured method including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Comparison of similarities/differences and description of reactions OR description of reactions and appropriate equations The candidate constructs a coherent account including most of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary are generally sound.	4	2		6		1

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
11.	(a)	(i)		+3		1		1		
		(ii)	$2 \mathrm{FeAsS}+5 \mathrm{O}_{2} \rightarrow \mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{SO}_{2}$ formulae (1) balancing (1) - only awarded if all formulae are correct award (1) for correctly balanced equation including FeO instead of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ $2 \mathrm{FeAsS}+41 / 2 \mathrm{O}_{2} \rightarrow \mathrm{As}_{2} \mathrm{O}_{3}+2 \mathrm{FeO}+2 \mathrm{SO}_{2}$		2		2	1		
	(b)	(i)	moles $\mathrm{As}_{2} \mathrm{O}_{3}$ in $100 \mathrm{~cm}^{3}=\frac{2.06}{197.8}=0.0104$ moles $\mathrm{As}_{2} \mathrm{O}_{3}$ in $1 \mathrm{dm}^{3}=0.0104 \times 10=0.104$ concentration $\mathrm{H}_{3} \mathrm{AsO}_{3}=0.104 \times 2=0.208 \mathrm{~mol} \mathrm{dm}^{-3}$ accept alternative method		2	1	3	2		
		(ii)	$\left[\mathrm{H}^{+}\right]=10^{-5.11}=7.76 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$		1		1	1		
	(c)		pyramidal (1) contains three bonding pairs and one lone pair of electrons (1) electron pairs arrange themselves around the central atom as far as possible from each other so that the repulsion between them is at a minimum / Ip - bp repulsion > bp - bp repulsion first two marks can be obtained from suitable diagram		1	2	3			

Question		Marking details	Marks available						
		AO1	AO2	AO3	Total	Maths	Prac		
(d)			$\begin{align*} & \mathrm{n}=\frac{p V}{R T} \tag{1}\\ & \mathrm{n}=\frac{1.01 \times 10^{5} \times 39 \times 10^{-6}}{8.31 \times 360} \tag{1}\\ & \mathrm{n}=1.317 \times 10^{-3} \mathrm{~mol} \tag{1}\\ & M_{\mathrm{r}}=\frac{0.181}{1.317 \times 10^{-3}}=137.4 \\ & M_{\mathrm{r}} \mathrm{PCl}_{3}=137.5 \text { therefore chloride is } \mathrm{PCl}_{3} \\ & \text { accept alternative method } \\ & \text { e.g. assume } \mathrm{PCl}_{3} \text { and work back to show volume of } 39 \mathrm{~cm}^{3} \end{align*}$	1	1 1	1	4	3	
(e)	(i)	$\begin{align*} & \left(\mathrm{P}^{35} \mathrm{Cl}_{2}\right)^{+} \\ & \text {accept if charge missing } \tag{1} \end{align*}$			1	1			
	(ii)	chlorine has isotopes ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ in ratio of 3:1 / 75% to 25% $(3: 1) \times(3: 1) \text { i.e } 9: 1$		1	1	2			
		Question 11 total	1	10	6	17	7	0	

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(ii)	mass of carbonate $=1.25$ $\mathrm{n}\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ in solution $=1.18 \times 10^{-3} \times 10=1.18 \times 10^{-2}(1)$ $\begin{align*} & M_{r}=\frac{1.25}{1.18 \times 10^{-2}}=106 \tag{1}\\ & A_{r}(\mathrm{M})=\frac{106-60}{2}=23 \quad \Rightarrow \mathrm{M} \text { is sodium } \tag{1} \end{align*}$ do not accept sodium if there is insufficient working to arrive at that conclusion ecf possible from part (i)		2	2	4	2	
	Question 12 total	3	6	5	14	3	8
	Paper total	28	35	17	80	20	13

