Centre Number

wjec choc

First name(s)

GCE AS/A LEVEL

2410U20-1

22-2410U20-

FRIDAY, 27 MAY 2022 – AFTERNOON

CHEMISTRY – AS unit 2 Energy, Rate and Chemistry of Carbon Compounds

Г

1 hour 30 minutes

	For Examiner's use only		e only
	Question	Maximum Mark	Mark Awarded
Section A	1. to 5.	10	
Section B	6.	15	
ADDITIONAL MATERIALS	7.	17	
In addition to this examination paper, you will need a:	8.	10	
calculator; Data Reaklet supplied by WLEC	9.	12	
· Data Dookiet supplied by WJLC.	10.	16	
INSTRUCTIONS TO CANDIDATES	Total	80	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions.

Section B Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in Q9(c).

			SECTION A	Examir only
			Answer all questions.	
1.	Brom	nine wa	ater can be used to test for alkenes.	
	(a)	(i)	State the expected colour change for a positive test for alkenes.	[1]
		(ii)	Draw the structure of the product formed when propene reacts with bromine water.	[1]
	(b)	Iden	tify another reagent that can be used to test for the presence of alkenes.	[1]
2.	Bond	ls in h	ydrocarbons are formed by the overlap of orbitals between each atom.	
	(a)	Drav	v an <i>s</i> -orbital and a <i>p</i> -orbital in the space below.	[1]
	(b)	Nam	e the type of bond shown in the diagram below.	[1]
			H H H H	
	02		© WIEC CRAC Ltd (24101120-1)	

A student suspects an unlabelled organic liquid is a carboxylic acid. Name the reagent(s) that must be added to the unknown organic liquid to test for the presence of a carboxylic acid. Give the expected observations for a positive result. [2] Complete the equation below to show the product of addition polymerisation. [1] C=C (^ → [2]

3

3.

4.

5. State the meaning of the term 'standard enthalpy change of formation'.

2410U201 03

Examiner only

BLANK PAGE

4

Examiner only Reaction of butan-2-ol with concentrated sulfuric acid results in the formation of (ii) three isomers with the formula C_4H_8 . Name the type of reaction used to form alkenes from alcohols. [1] Ι. Π. Give the structure and **name** of the three isomers formed. [3] Structure Structure Structure 2410U201 07 Name: Name: Name: 15

7

Examiner only Petroleum ether (50-70) is a mixture of different alkanes extracted from crude oil which is 7. commonly used as an organic solvent. The major components of petroleum ether (50-70) are the structural isomers of C_6H_{14} . (a) (i) Give the meaning of the term 'structural isomer'. [1] (ii) Complete the table below showing important information about the isomers of C_6H_{14} . [3] Boiling Shortened structural formula Skeletal formula temperature Name / °C hexane CH₃CH₂CH₂CH₂CH₂CH₃ 69 2-methylpentane 62 CH₃CH₂CH(CH₃)CH₂CH₃ 3-methylpentane 63 (CH₃)₂CHCH(CH₃)₂ 58 2,2-dimethylbutane CH₃C(CH₃)₂CH₂CH₃ 50

Examiner only State the relationship between the boiling temperature and the carbon chain (iii) length. Explain this relationship in terms of intermolecular forces. [2] (b) Hexane can be used as a fuel in a combustion reaction. Write an equation for the complete combustion of hexane in excess oxygen. (i) [2] The enthalpy change of combustion $(\Delta_{c}H^{\theta})$ for hexane is approximately (ii) $-4160 \text{ kJ mol}^{-1}$. Explain why the enthalpy change of combustion for the isomers of hexane should be similar. [2] 2,2-dimethylbutane is the isomer of C_6H_{14} which ignites most readily. Suggest a (iii) reason for this. [1]

9

Turn over.

2410U201 09 (iv) When hexane burns in a limited supply of oxygen it undergoes a different reaction known as incomplete combustion:

 C_6H_{14} + 6.5 O_2 \longrightarrow 6CO + 7H₂O

The bond enthalpy values for the bonds present in these molecules are given below:

Bond	Average bond enthalpy / kJ mol ⁻¹
c-c	348
С—Н	413
0=0	495
C≡O (in CO)	1072
0—Н	464

I. Using a Hess cycle or otherwise, calculate the enthalpy change of this reaction. [3]

enthalpy change = kJ mol⁻¹

II. Use the enthalpy values from parts (b)(ii) and (b)(iv) I. to explain quantitatively why it is important to maintain an excess of oxygen while burning hexane as a fuel.
[2]

© WJEC CBAC Ltd.

III.	State a health hazard	d associated with the	e incomplete combustion	of hexane. [1]	Examine only 17	13410 U 201
	© WJEC CBAC Ltd.	(2410U20-1)		Turn over.		

8. Compound A contains only carbon, hydrogen and an unknown halogen.

Refluxing compound **A** in aqueous sodium hydroxide followed by the addition of nitric acid and aqueous silver nitrate produces a white precipitate.

Elemental analysis of compound **A** indicates it contains 39.02% carbon and 3.25% hydrogen by mass.

When bromine is added to compound **A**, 123 g of compound **A** reacts with 320 g of bromine.

The ¹HNMR spectrum of compound **A** consists of only one peak. The ¹³CNMR spectrum of compound **A** consists of two peaks.

The infrared spectrum and simplified mass spectrum are shown below and overpage.

© WJEC CBAC Ltd.

Turn over.

	Examiner
	10
14 © WJEC CBAC Ltd (24101/20-1)	

BLANK PAGE

15

		Examine	er
(ii)	Calculate the initial rate of reaction for the reaction catalysed by the copper(II) ions.	[2]	
	rate =	s ⁻¹	
(iii)	Each catalysed reaction contained the same number of moles of catalyst at the beginning of the reaction. Calculate the moles of catalyst left at the end of the reaction.	e [1]	
	moles =	mol	

	18	_
(C)	Increasing temperature and the addition of a catalyst are two ways of increasing the rate of a reaction.	Exam onl
	Using your knowledge of the Boltzmann distribution and particle theory, explain how the rate of reaction is increased using these two different methods. You may use a diagram(s) to support your answer. [6 QER]	
<u>.</u>		
••••••		
·····		
••••••		
·····		
•••••		

BLANK PAGE

19

- **10.** The crystallisation of sodium ethanoate from a super-saturated solution is used to release heat in reusable hand warmers.
 - (a) A super-saturated solution of sodium ethanoate was made by dissolving 320 g of hydrated sodium ethanoate ($CH_3COONa.3H_2O$) in 60 cm³ of hot water. It was then allowed to cool to room temperature, which was measured as 17 °C.

A thermometer was added to the solution, which caused the sodium ethanoate to start crystallising. The temperature of the process was recorded every 30 seconds for 3 minutes. The results are shown below:

Time/s	Temperature / °C
0	17
30	27
60	35
90	41
120	40
150	39
180	38

	$M_{\rm r}({\rm CH}_{3}{\rm COONa.3H}_{2}{\rm O}) = 136$ [4]
	enthalpy change = kJ mol ⁻¹
iv)	Suggest a reason why the experimental enthalpy change is often lower than the theoretical enthalpy change. [1]
Sodiu equa	um ethanoate can be made in a neutralisation reaction. Complete the following [2]
⁻he o xida	arboxylic acid used to produce sodium ethanoate can be produced using an tion reaction.
(i)	Name the reagents and give the expected observations. [2]
	v) Godiu quat

 (ii) A student proposed that the apparatus below should be used to perform this oxidation reduction experiment.

The teacher said that this would not work and would be unsafe. Draw a labelled diagram of the apparatus that should be used in this experiment. [3]

END OF PAPER

(2410U20-1)

© WJEC CBAC Ltd.

Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

(2

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		1

© WJEC CBAC Ltd.

(2410U20-1)

BLANK PAGE

27

GCE AS/A LEVEL

FRIDAY, 27 MAY 2022 – AFTERNOON

CHEMISTRY – AS unit 2 Data Booklet

Avogadro constant
molar gas constant
molar gas volume at 273K and 1 atm
molar gas volume at 298 K and 1 atm
Planck constant
speed of light
density of water
specific heat capacity of water
ionic product of water at 298 K
fundamental electronic charge

N_A	=	$6.02 \times 10^{23} \text{ mol}^{-1}$
R	=	8.31 J mol ⁻¹ K ⁻¹
V_m	=	22.4 dm ³ mol ⁻¹
V_m	=	24.5 dm ³ mol ^{-1}
h	=	$6.63 imes 10^{-34} \mathrm{Js}$
С	=	$3.00 \times 10^8 \mathrm{ms^{-1}}$
d	=	$1.00 \mathrm{gcm^{-3}}$
С	=	$4.18 \mathrm{Jg}^{-1}\mathrm{K}^{-1}$
K_w	=	$1.00 \times 10^{-14} \text{ mol}^2 \text{dm}^{-6}$
е	=	1.60 × 10 ⁻¹⁹ C

temperature (K) = temperature (°C) + 273

 $1 \,\mathrm{dm^3} = 1000 \,\mathrm{cm^3}$ $1 \text{ m}^3 = 1000 \text{ dm}^3$ 1 tonne = 1000 kg 1 atm = 1.01×10^5 Pa

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10-9	nano	n	10 ³	kilo	k
10-6	micro	μ	10 ⁶	mega	М
10-3	milli	m	10 ⁹	giga	G

Infrared absorption values

Bond	Wavenumber / cm ⁻¹
C — Br	500 to 600
C - CI	650 to 800
C-0	1000 to 1300
C = C	1620 to 1670
C=0	1650 to 1750
$C \equiv N$	2100 to 2250
C-H	2800 to 3100
O—H (carboxylic acid)	2500 to 3200 (very broad)
O—H (alcohol / phenol)	3200 to 3550 (broad)
N-H	3300 to 3500

13 C NMR chemical shifts relative to TMS = 0

Type of carbon	Chemical shift, δ (ppm)
	5 to 40
$\begin{array}{c} R \longrightarrow C \\ C \longrightarrow C \\ I \end{array} Or Br \\ I \end{array}$	10 to 70
$\begin{array}{c} R - C - \overset{ }{C} - \overset{ }{C} \\ \parallel & \parallel \\ O \end{array}$	20 to 50
$\mathbf{R} - \mathbf{C} - \mathbf{N}$	25 to 60
	50 to 90
)c=c(90 to 150
$R - C \equiv N$	110 to 125
	110 to 160
R — C — (carboxylic acid / es O	ster) 160 to 185
R — C — (aldehyde / ketone) O	190 to 220

© WJEC CBAC Ltd.

¹ H NMR chemical shifts i	relative to TMS = 0
Type of proton	Chemical shift, δ (ppm)
$-CH_3$	0.1 to 2.0
$R-CH_3$	0.9
R-CH ₂ -R	1.3
$CH_3 - C \equiv N$	2.0
CH ₃ -C	2.0 to 2.5
$-CH_2-C$	2.0 to 3.0
	2.2 to 2.3
HC-Cl or HC-Br	3.1 to 4.3
HC-O	3.3 to 4.3
R—OH	4.5 *
-C = CH	4.5 to 6.3
-c = CH - CO	5.8 to 6.5
CH=C	6.5 to 7.5
— Н	6.5 to 8.0
О ОН	7.0 *
R-CH	9.8 *
R−C ^O OH	11.0 *

*variable figure dependent on concentration and solvent

		c					HL		RIOI		-ABL	щ	c	•	L	c.	1	c
Period	s blc	N (5	dno					n	4	ი	Ø	~	
~	1.01 Hydrogen						Key	elative							d lq	ock		
2	6.94 Li Lithium 3	9.01 Be Beryllium				ŵ ²	Ar mbol	atomic number					10.8 B 5	12.0 C Carbon 6	14.0 Nitrogen	16.0 O S 8	19.0 F Fluorine 9	
С	23.0 Na Sodium	24.3 Mg 12					d blo	Ck					27.0 Al Aluminium 13	28.1 Si 14	31.0 Phosphorus	32.1 S Sulfur 16	35.5 CI Chlorine	
4	39.1 K Potassium 19	40.1 Ca Calcium 20	45.0 Sc Scandium 21	47.9 Ti Titanium 22	50.9 V Vanadium 23	52.0 Cr Chromium 24	54.9 Mn Manganese 25	55.8 Fe Iron 26	58.9 Co Cobalt 27	58.7 Ni Nickel 28	63.5 Cu Copper 29	65.4 Zn Zinc 30	69.7 Ga Gallium 31	72.6 Ge Germanium 32	74.9 As Arsenic 33	79.0 Se 34	79.9 Br Bromine 35	Y
2	85.5 Rb Rubidium 37	87.6 Sr 38	88.9 Y Yttrium 39	91.2 Zr Zirconium 40	92.9 Nb Niobium 41	95.9 MO Molybdenum 42	98.9 TC Technetium	101 Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 lodine 53	~
9	133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum	179 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Osmium 76	192 Ir Iridium 77	195 Pt 78	197 Au Gold 79	201 Hg Mercury 80	204 TI Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	(210) PO 84	(210) At Astatine 85	
2	(223) Fr Francium 87	(226) Radium 88	(227) Ac b Actinium 89							f blo	- Xo							
		► La	nthanoid ements	140 Ce	Pr 141	144 Nd	(147) Pm	150 Sm	(153) Eu	157 Gd	159 Tb	Dy 163	165 Ho	167 Er	169 Tm	173 Yb	175 Lu	

© WJEC CBAC Ltd.

4

Lutetium 71

Ytterbium 70

Thulium 69

Erbium 68

Holmium 67

Dysprosium 66

Terbium 65

> Gadolinium 64

Europium 63

Samarium 62

Promethium

61

Neodymium 60

Praseodymium 59

Cerium

58

Lawrencium 103

Mendelevium 101

Fermium 100

Einsteinium 99

Californium 98

Berkelium 97

Curium 96

Americium 95

Plutonium 94

Neptunium 93

Uranium 92

Protactinium 91

Thorium 90

(257) Lr

(256) Md

(253) Fm

(254) Es

(251) Cf

(245) BK

(247) Cm

(243) Am

(242) Pu

(237) Np

∪ 238

(231) Pa

232 Th

> Actinoid elements

(254) No 102