Centre Number Candidate Number

First name(s)

wjec

GCE AS/A LEVEL

2420U10-1

WEDNESDAY, 18 MAY 2022 – MORNING

PHYSICS – AS unit 1 Motion, Energy and Matter

1 hour 30 minutes

For Examiner's use only					
Question	Maximum Mark	Mark Awarded			
1.	9				
2.	10				
3.	17				
4.	14				
5.	9				
6.	12				
7.	9				
Total	80				

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator and a **Data Booklet**.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space use the additional page at the back of the booklet taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 80.

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 5(a).

Examiner only The spring is compressed by 0.4 m. The car is placed against the end of the spring, which is then released. Assuming that all of the spring's energy is (i) transferred to the car and that no resistive forces act on it, calculate the speed of the car at the top of the loop. [3] (ii) In reality resistive forces act on the car to the extent that the car loses 5% of its initial energy to frictional forces in moving from the spring to the top of the loop. Calculate the mean resistive force acting on the car during this motion. [3]

		∣Examiner
(ii)	The rate of change of momentum of the air from the 4 rotors can be expressed as:	only
	$4\pi r^2 \rho v^2$	
	where <i>r</i> is the radius of each of the rotor blades, <i>v</i> is the speed of the air which is set in motion and ρ is the density of the air. Use this expression to show that the weight of the drone is approximately 20 N. [ρ = 1.3 kg m ⁻³ , <i>r</i> = 5.0 × 10 ⁻² m] [2]	
(iii)	Calculate the vertical acceleration of the drone when v is increased to 24 m s ⁻¹ . [4]	
		5
		2420U101
••••••		
•••••		
		-

2420U101 07

(C)	(i)	Define <i>velocity</i> . [1]
	(ii)	Bill flies the drone from A to B in a time of 32s along the path shown below. The drone is kept at the same height above the ground for the entire flight.
		$\bigotimes_{i=1}^{k} A - start$
		View from above, not drawn to scale
		40 m •
		90 m
		B – end ⊗ 30 m
		Bill's friend Ted believes that, in flying this path (from A to B), the mean speed of the drone is more than twice the magnitude of its mean velocity. Bill disagrees. Use the information given to determine who is correct. [4]
	·····	
	······	
	······	
	······	
(d)	Dror	nes have many applications in today's society. Give one benefit and one risk of the technology. [2]
<u>d</u>)	Dror	nes have many applications in today's society. Give one benefit and one risk of e technology. [2]
d)	Dror	nes have many applications in today's society. Give one benefit and one risk of e technology. [2]

BLANK PAGE

9

PLEASE DO NOT WRITE ON THIS PAGE

4. Karen is an A level Physics student who has been absent for some of her Physics practical lessons. During her absence, the other students in the class have been using the apparatus below to identify the metal in a wire by finding the Young modulus of the metal and comparing it with known values.

Examiner only

•••••				
·····				
 (ii	i)	Karen is told by her teacher that the p this information along with Karen's no absolute uncertainty in the Young m appropriate number of significant figu	otes and your answers to (a) to calcu odulus. Give your answer in GPa ar	ulate the
·····				
•••••				
 ;) Th	ne f	ollowing table shows Young modulus	values of the wires available to the s	students.
 ;) Th	ne f	ollowing table shows Young modulus	values of the wires available to the s Young modulus/GPa	students.
) Th	ne f			students.
) Tr	ne f	Metal	Young modulus/GPa	students.
	ne f	Metal aluminium	Young modulus/GPa 70	students.
	ne f	Metal aluminium zinc	Young modulus/GPa 70 100	students.
	ne f	Metal aluminium zinc bronze	Young modulus/GPa 70 100 103	students.
Ka	arei	Metal aluminium zinc bronze copper nickel	Young modulus/GPa 70 100 103 117 166 modulus of the metal to be 126±20	GPa.
Ka Th	arei	Metal aluminium zinc bronze copper	Young modulus/GPa 70 100 103 117 166 modulus of the metal to be 126±20	GPa.
Ka Th	arei	Metal aluminium zinc bronze copper nickel	Young modulus/GPa 70 100 103 117 166 modulus of the metal to be 126±20	GPa. ow Jack's
Ka Th	arei	Metal aluminium zinc bronze copper nickel	Young modulus/GPa 70 100 103 117 166 modulus of the metal to be 126±20	GPa. ow Jack's
Ka Th	arei	Metal aluminium zinc bronze copper nickel	Young modulus/GPa 70 100 103 117 166 modulus of the metal to be 126±20	GPa. ow Jack's
Ka Th	arei	Metal aluminium zinc bronze copper nickel	Young modulus/GPa 70 100 103 117 166 modulus of the metal to be 126±20	GPa. ow Jack's

(d)	Jack had more time to carry out this experiment than Karen. Suggest differences in the way Jack carried out the experiment (i.e. procedure) and in the way that he analysed his results which led to him reaching a different conclusion to Karen. [3]	Examine only
······		
		14
12	© WJEC CBAC Ltd. (2420U10-1)	

Examiner only **Hadrons** are a group of particles. Write a detailed account of hadrons, including how they may be subdivided into other groups of particles, giving examples. [6 QB 5. (a) [6 QER] A high energy interaction between a proton and a pion is shown below. (b) $p + \pi^- \rightarrow n + \pi^+ + \pi^-$ Use conservation laws to show that the interaction is possible. [3] 9

© WJEC CBAC Ltd.

	Steve is a shot putter. He throws a shot with a velocity of 11.0 m s ⁻¹ in a direction 50° to the horizontal. The shot takes 1.95 s to reach the ground.			
	(i)	Show that the vertical component of the initial velocity is approximately 8 m s^{-1} . [1		
	(ii)	Hence calculate, H , the vertical distance above the ground from which the shot was thrown. [3	 8]	
	······			
	(iii)	Calculate the horizontal distance, <i>R</i> , for this throw. [2	 2] 	
(c)	Stev	e makes the following comment to Bryn, a fellow competitor.		
	"Thro horiz	owing the shot at an angle even greater than 50° to the horizontal will increase the contal distance travelled by the shot because the time of flight will increase."		
		sider whether or not it would be a good idea for Bryn to follow Steve's advice. fy your answer.	3]	
	······			
			 1	


```
ACIEd
```

on .	Additional page, if required. Write the question number(s) in the left-hand margin.	Exam onl
••••••		
•••••		
		• • • • • • • • • • •

BLANK PAGE

19

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

