Surname
First name(s)

Centre Number	
	Candidate Number
2	

GCE A LEVEL

A410U10-1
||| ||
Z22-A410U10-1

MONDAY, 13 JUNE 2022 - MORNING

CHEMISTRY - A level component 1

Physical and Inorganic Chemistry

2 hours 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Section A Answer all questions.

	For Examiner's use only		
	Question	Maximum Mark	Mark Awarded
Section A	1. to 8.	15	
Section B	9.	25	
	10.	21	
	11.	15	
	12.	17	
only. number	13.	27	
	Total	120	

Section B Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.
Candidates are advised to allocate their time appropriately between Section A (15 marks) and
Section B (105 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The maximum mark for this paper is 120 .
Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.
The assessment of the quality of extended response (QER) will take place in $\mathbf{Q . 9 (c) (i) ~ a n d ~ Q . 1 3 (a) . ~}$

SECTION A \quad| Examiner |
| :---: |
| only |
| Answer all questions. |

1. Write the electron configuration of a silicon atom.
2. The electronegativity values of some elements are listed in the table.

Element	Al	C	Cl	H	O
Electronegativity value	1.5	2.5	3.0	2.1	3.5

(a) Label the bonds below with $\delta+$ and δ - to show any dipoles that are present.

$\mathrm{H}-\mathrm{Cl}$
$\mathrm{O}-\mathrm{Cl}$
(b) Give a reason why aluminium chloride is covalent.
\qquad
\qquad
3. Draw a dot-and-cross diagram to show the bonding in the molecule BeF_{2}.

(b) Suggest, giving a reason, the pH of a solution of sodium ethanoate.
\qquad
\qquad
\qquad
6. The first ionisation energy of magnesium is $738 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the frequency of light that would correspond to this energy.

Frequency $=$
Hz
7. Give the most stable oxidation state of lead, giving a reason why this is more stable than its other common oxidation state.
\qquad
\qquad
\qquad
8. The Born-Haber cycle shown represents the enthalpy changes during the formation of sodium chloride.

(a) State the name of the enthalpy change that has a value of $-349 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
\qquad
(b) Calculate the enthalpy change of lattice breaking of sodium chloride.
\qquad

SECTION B
Answer all questions.
9. Cerium is a metallic element in the f-block of the Periodic Table.
(a)Cerium has four natural isotopes. The relative isotopic masses and percentage abundances of these isotopes are given in the table.
\qquadIsotope Relative isotopic mass Percentage abundance ${ }^{136} \mathrm{Ce}$ 135.9 0.19 ${ }^{138} \mathrm{Ce}$ 137.9 0.25 ${ }^{140} \mathrm{Ce}$ 139.9 88.45 ${ }^{142} \mathrm{Ce}$ 141.9 11.11

Answer all questions.

9. Cerium is a metallic element in the f-block of the Periodic Table.
(a) Cerium has four natural isotopes. The relative isotopic masses and percentage abundances of these isotopes are given in the table.
(i) State what is meant by the term 'relative isotopic mass'.
\qquad
(ii) Calculate the relative atomic mass of cerium, giving your answer to four significant figures. You must show your method.

$$
\mathrm{A}_{\mathrm{r}}(\mathrm{Ce})=
$$

\qquad
(b) Some radioactive isotopes of cerium can be synthesized by nuclear reactions.

Radioisotope of cerium	Type of decay	Half-life
${ }^{134} \mathrm{Ce}$	electron capture	3 days
${ }^{139} \mathrm{Ce}$	electron capture	140 days
${ }^{143} \mathrm{Ce}$	β^{-}emission	33 hours
${ }^{144} \mathrm{Ce}$	β^{-}emission	280 days

(i) Identify the isotopes produced from ${ }^{134} \mathrm{Ce}$ and ${ }^{143} \mathrm{Ce}$ in their radioactive decay processes.

Decay of ${ }^{134} \mathrm{Ce}$
Element symbol \qquad Mass number

Decay of ${ }^{143} \mathrm{Ce}$
Element symbol \qquad Mass number. \qquad
(ii) One method of measuring the half-life of isotopes with half-lives of a few hours to a few days is to take a sample of known composition and record low resolution mass spectra at regular intervals to measure the height of the peaks of each mass.

Suggest why this method would not be suitable for any of these isotopes.
(iii) Another method of measuring the half-life is to measure the level of radioactivity over time.

An initial sample contained a mixture of equal amounts of ${ }^{139} \mathrm{Ce}$ and ${ }^{144} \mathrm{Ce}$. After
a period of storage, the β^{-}emission due to ${ }^{144} \mathrm{Ce}$ had dropped to 25% of its initial
An initial sample contained a mixture of equal amounts of ${ }^{139} \mathrm{Ce}$ and ${ }^{144} \mathrm{Ce}$. After
a period of storage, the β^{-}emission due to ${ }^{144} \mathrm{Ce}$ had dropped to 25% of its initial value.

By considering the decay of both isotopes, calculate the percentage of the cerium remaining that is ${ }^{139} \mathrm{Ce}$.

Percentage $=$
(c) Ce^{4+} ions can be used as oxidising agents in redox titrations, such as those involving the oxidation of Fe^{2+}.

$$
\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{Fe}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Ce}^{3+}(\mathrm{aq})+\mathrm{Fe}^{3+}(\mathrm{aq})
$$

(i) A titration requires $250 \mathrm{~cm}^{3}$ of a standard solution of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ of concentration $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$.

Describe how this standard solution could be produced. You should include the mass of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ that would be required.

$$
\text { mass of Ce(SO } \left.)_{4}\right)_{2} \text { tnat would de requirea. }
$$

(ii) A sample of 0.680 g of an iron ore containing FeCO_{3} as the only iron-containing compound was dissolved in a suitable acid. This was titrated against the standard $\mathrm{Ce}^{4+}(\mathrm{aq})$ solution produced in part (i) and it required $22.45 \mathrm{~cm}^{3}$ of the standard solution for complete reaction.

Calculate the mass of FeCO_{3} present in the ore sample.

Mass of $\mathrm{FeCO}_{3}=$
(iii) A separate ore contains both FeO and FeCO_{3}.

Explain why the method in part (ii) would not be suitable for finding the mass of FeCO_{3} in this ore and outline a method that would be suitable.
(d) Ce^{4+} ions can be produced in solution by oxidation of Ce^{3+} ions.

Use the data below to identify suitable oxidising agent(s) for this process, giving your reasoning.

Standard electrode potential, E^{θ} / V	
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$	+1.78
$\mathrm{Ce}^{4+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ce}^{3+}$	+1.61
$\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \frac{1}{2} \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	+1.52
$\mathrm{ClO}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$	+1.23

Examiner

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

10. There are many organic acids produced by living things. These include citric acid in fruit and lactic acid produced during anaerobic respiration.
(a) A solution of citric acid is found to have a pH of 3.2. Calculate the concentration of H^{+} ions in this solution.
Concentration =
\qquad moldm^{-3}
(b) Citric acid is a tribasic acid, represented as H_{3} (citrate), as it contains three acidic hydrogen atoms in each molecule.

It reacts with sodium hydrogencarbonate in an endothermic reaction.
H_{3} (citrate)(aq) $+3 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Na}_{3}($ citrate $)(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{CO}_{2}(\mathrm{~g})$
(i) Suggest why this reaction is feasible even though the reaction is endothermic. [2]
(ii) A sample of $50.0 \mathrm{~cm}^{3}$ of aqueous citric acid was treated with excess aqueous NaHCO_{3} and the volume and temperature of the carbon dioxide gas produced was measured.

A total of $72.2 \mathrm{~cm}^{3}$ of carbon dioxide was produced at a temperature of $16^{\circ} \mathrm{C}$ and 1 atm pressure. Calculate the initial concentration of the aqueous citric acid.
(iii) In a separate experiment, a student studies the enthalpy change during the reaction between aqueous citric acid and solid sodium hydrogencarbonate, NaHCO_{3}.

He follows the method below.

1. Measure $50.0 \mathrm{~cm}^{3}$ of citric acid of concentration $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ and place in a polystyrene cup with a lid.
2. Place a thermometer with $0.1^{\circ} \mathrm{C}$ divisions through the lid of the cup and measure the temperature of the citric acid every 30 seconds for 3 minutes.
3. At 3 minutes add 2.300 g of powdered NaHCO_{3} and mix thoroughly.
4. Measure the temperature every 30 seconds for a further 5 minutes.
5. Plot a graph of the data and use this to find the maximum temperature change.
I. Explain why the temperature is measured every 30 seconds for 3 minutes before adding the NaHCO_{3}.
II. Explain why the temperature is measured every 30 seconds for 5 minutes after adding the NaHCO_{3}.
III. Calculate the number of moles of both citric acid and sodium hydrogencarbonate used in the experiment and hence show which is in excess.
IV. The maximum temperature change, ΔT, is found to be $-2.3^{\circ} \mathrm{C}$.

Calculate the percentage error in this measurement.

Percentage error $=$
V. The experiment is repeated using different conditions to produce a larger temperature change. Using $25.0 \mathrm{~cm}^{3}$ of $0.800 \mathrm{moldm}^{-3}$ citric acid solution and excess sodium hydrogencarbonate gives a temperature change of $-10.1^{\circ} \mathrm{C}$.

Calculate the enthalpy change for the reaction.
H_{3} (citrate) $+3 \mathrm{NaHCO}_{3} \longrightarrow \mathrm{Na}_{3}$ (citrate) $+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
(c) Lactic acid is a weak monobasic acid with a K_{a} of $1.40 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.
(i) Calculate the concentration of a lactic acid solution of pH 2.89 .

Examiner

Concentration $=$

\qquad moldm^{-3}
(ii) A mixture of lactic acid and sodium lactate forms a buffer solution.
I. State what is meant by a 'buffer solution'.
\qquad
\qquad
II. Calculate the pH of a buffer solution formed by mixing $100 \mathrm{~cm}^{3}$ of $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous lactic acid with $50 \mathrm{~cm}^{3}$ of $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous sodium lactate.

$$
\mathrm{pH}=
$$

\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

11. Seawater contains a wide range of compounds formed from atoms of many different elements. The ten most abundant elements are shown in the table.

Element	Abundance/ gdm^{-3}
oxygen	857
hydrogen	108
chlorine	19.4
sodium	10.8
magnesium	1.29
sulfur	0.905
calcium	0.412
potassium	0.399
bromine	0.0673
carbon	0.0281

(a) Seawater contains a range of oxyanions such as carbonate and sulfate which contain a small proportion of the oxygen atoms present.

Assuming all hydrogen atoms present are contained in water molecules, use the data in the table to calculate the percentage of the oxygen atoms that are present in water molecules.
(b) Flame tests can identify many of the metal ions present in seawater.
(i) Give the colours expected in flame tests for each of the metal ions present.
sodium
magnesium \qquad
calcium
potassium \qquad
(ii) Suggest why flame tests are not always effective for identifying the metal ions present in mixtures like seawater.
\qquad
\qquad
(c) It is possible to form crystals of sodium chloride by evaporation of seawater.

Complete and label the diagram below to show the crystal structure of sodium chloride.

(d) Evaporation of seawater can also form hydrated salts, $\mathrm{MX}_{n} \cdot \mathrm{aH}_{2} \mathrm{O}$, that include common ions formed from the elements listed in the table. One such salt has several different hydrated forms, including $\mathrm{a}=6, \mathrm{a}=4$ and $\mathrm{a}=2$.

A sample of $\mathrm{MX}_{\mathrm{n}} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is heated and loses 16.44% of its initial mass as it forms $M X_{n} \cdot 4 H_{2} \mathrm{O}$. Identify $M X_{n}$. You must show your working.

Identity of salt \qquad
(e) Bubbling chlorine gas through seawater causes an orange colouration to appear as small amounts of $\mathrm{Br}_{2}(\mathrm{aq})$ are formed.
(i) Write an ionic equation for this process.
(ii) Excess chlorine is bubbled through a sample of seawater and $0.0673 \mathrm{gdm}^{-3}$ of Br_{2} is produced. Find the concentration of $\mathrm{Br}_{2}(\mathrm{aq})$ in $\mathrm{mol} \mathrm{dm}^{-3}$.
(f) The carbon present in seawater exists as dissolved carbon dioxide, $\mathrm{HCO}_{3}{ }^{-}$ions and $\mathrm{CO}_{3}{ }^{2-}$ ions. There are complex equilibria between these species, which can be simplified as follows.

$$
\begin{aligned}
\mathrm{CO}_{2}(\mathrm{~g}) & \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq}) \\
\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})
\end{aligned}
$$

These equilibria are important when discussing the effects of increased atmospheric carbon dioxide and climate change.

More carbon dioxide in the atmosphere can lead to a decrease in the pH of the oceans. This can cause problems for marine creatures that form shells out of carbonate minerals. Use the equilibria to explain why this is so.
mieral. Use the equibria to explain why is so.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
12. A transition metal compound $\left[\mathrm{ML}_{n}\right] \mathrm{X}_{2}$ was analysed and the following observations were made.
$\left.\begin{array}{|l|l|}\hline \text { Crystal structure } & \begin{array}{l}\text { The compound contains an octahedral } \\ \text { transition metal complex with anions } \mathrm{X}^{-} \\ \text {formed from single atoms. }\end{array} \\ \hline \begin{array}{l}\text { Addition of sodium hydroxide solution and } \\ \text { warming }\end{array} & \begin{array}{l}\text { A pungent-smelling gas is released that turns } \\ \text { moist red litmus paper blue. } \\ \text { A precipitate with an unfamiliar colour forms } \\ \text { when the solution cools. This precipitate does } \\ \text { not dissolve in excess sodium hydroxide. }\end{array} \\ \hline \text { Addition of concentrated sulfuric acid } & \begin{array}{l}\text { Coloured fumes are released with a smell of } \\ \text { rotten eggs. }\end{array} \\ \hline \begin{array}{l}\text { Addition of ligand } \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2},\end{array} & \begin{array}{l}\text { A new complex is formed with formula } \\ \text { represented by the abbreviation 'en' }\end{array} \\ \left.\hline \text { 18.82\% })_{3}\right] \mathrm{X}_{2} . \text { The mass of this compound is }\end{array}\right\}$
(a) State which anions, X^{-}, are present in the compound, giving a reason for your answer.
(b) The compound forms a coloured precipitate when sodium hydroxide is added.
(i) Explain why transition metals form coloured compounds.

\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The precipitate does not dissolve when excess sodium hydroxide is added. State what information this provides about metal M .
\qquad
(c) State which ligands, L, are present in the complex ion, giving a reason for your answer.
\qquad
\qquad
\qquad
(d) State the value of n , the number of ligands present in the complex.
\qquad
(e) Use the reaction with $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ to calculate M_{r} for $\left[\mathrm{ML}_{\mathrm{n}}\right] \mathrm{X}_{2}$ and hence find the identity of the transition metal, M .

You must show your working.

$$
M_{r}=
$$

M is \qquad
(f) Write the formula of the complex cation, $\left[M L_{n}\right]^{a+}$.
(g) The metal hydroxide produced on reaction with sodium hydroxide, $\mathrm{M}(\mathrm{OH})_{2}$, decomposes on heating in a similar manner to the decomposition of Group 2 hydroxides.
(i) Write an equation for the thermal decomposition of $\mathrm{M}(\mathrm{OH})_{2}$.
(ii) Give the trend in the thermal stability of the hydroxides in Group 2.
\qquad
\qquad
(iii) The Group 2 metal carbonates also decompose upon heating. Calculate the minimum temperature required to decompose MgCO_{3}.

$$
\mathrm{MgCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H^{\theta}=117 \mathrm{kJmol}^{-1}
$$

$$
\Delta S^{\theta}=175 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

\qquad
13. The elements of Group 5 react with hydrogen to form compounds of formula XH_{3}. Some information regarding the physical properties of these compounds is shown in the table.

Compound	Formula	Boiling temperature $/{ }^{\circ} \mathrm{C}$	Solubility in water $/ \mathrm{g} \mathrm{dm}^{-3}$
ammonia	NH_{3}	-33	470
phosphane	PH_{3}	-83	0.312
arsane	AsH_{3}	-63	0.710
stibane	SbH_{3}	-17	4.24

(a) Identify and explain the patterns seen in these physical properties.
[6 QER]
\qquad
(b) Use VSEPR theory to predict the shape of the PH_{3} molecule, giving reasons for your answer.
(c) Stibane is a gas that decomposes slowly at a temperature of $350^{\circ} \mathrm{C}$.

$$
2 \mathrm{SbH}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{Sb}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

The decomposition of stibane was studied in a sealed vessel, with the pressure measured over a period of 100 hours. The results are shown on the graph.

Gas pressure/Pa

(i) The initial pressure in the vessel was 42000 Pa . Calculate the pressure in the vessel when all the stibane had decomposed.

Pressure $=$ Pa
(ii) Calculate the initial rate of change of pressure in Pahr^{-1}.

$$
\text { Rate of change of pressure }=
$$

\qquad Pahr ${ }^{-1}$
(iii) Use the initial pressure and your answer to part (i) to calculate the pressure in the vessel when half the stibane had decomposed.

Use this and the graph to show that the reaction is first order with respect to stibane.
(d) Ammonia is produced industrially using the Haber process.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The reaction traditionally used iron-based catalysts which reduce the activation energy of the reaction to $101.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Newer catalysts have been developed using ruthenium which reduce the activation energy further to $64.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(i) These are examples of heterogeneous catalysts.

State what is meant by a 'heterogeneous' catalyst.
(ii) State, giving a reason, the effect of changing the catalyst on the position of this
(iii) The Haber process typically uses a temperature of $500^{\circ} \mathrm{C}$.

Replacing the iron-based catalyst with a newer ruthenium-based catalyst increases the initial rate of reaction by a factor, \mathbf{f}, at this temperature.

Use the Arrhenius equation to calculate the value of f.
You may assume that the frequency factor in both cases is the same.
(1) The
$\mathrm{f}=$
(e) When water is added to gaseous phosphane no visible reaction occurs. However, studies using isotopes of hydrogen have shown that hydrogen atoms are exchanged between the phosphane and water.

The following gas phase equilibrium occurs, where D represents deuterium, a hydrogen isotope with a mass number of 2 .

$$
\mathrm{PH}_{2} \mathrm{D}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{PH}_{3}(\mathrm{~g})+\mathrm{HDO}(\mathrm{~g})
$$

A sealed vessel of volume $500 \mathrm{~cm}^{3}$ contained $1.00 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{PH}_{2} \mathrm{D}(\mathrm{g})$. A sample of $4.90 \times 10^{-4} \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ was added and the mixture allowed to reach equilibrium.

The mass spectrum of the equilibrium mixture shows that 36% of the phosphorus is present in PH_{3} and 64% of the phosphorus is present in $\mathrm{PH}_{2} \mathrm{D}$.

Calculate the value of the equilibrium constant K_{c} for this reaction.

$$
K_{\mathrm{c}}=
$$

\qquad

END OF PAPER

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

	$\begin{aligned} & \text { Question } \\ & \text { number } \end{aligned}$	Additional page, if required. Write the question number(s) in the left-hand margin.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

MONDAY, 13 JUNE 2022 - MORNING

CHEMISTRY - A level component 1

Data Booklet

Avogadro constant
molar gas constant
molar gas volume at 273 K and 1 atm
molar gas volume at 298 K and 1 atm
Planck constant
speed of light
density of water
specific heat capacity of water
ionic product of water at 298 K
fundamental electronic charge

$$
\begin{aligned}
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
R & =8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \\
V_{m} & =22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\
V_{m} & =24.5 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\
h & =6.63 \times 10^{-34} \mathrm{Js} \\
c & =3.00 \times 10^{8} \mathrm{~ms}^{-1} \\
d & =1.00 \mathrm{~g} \mathrm{~cm}^{-3} \\
c & =4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1} \\
K_{w} & =1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \\
e & =1.60 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

temperature $(\mathrm{K})=$ temperature $\left({ }^{\circ} \mathrm{C}\right)+273$
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}$
1 tonne $=1000 \mathrm{~kg}$
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$

Multiple	Prefix	Symbol
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

Infrared absorption values

Bond
$\mathrm{C}-\mathrm{Br}$
$\mathrm{C}-\mathrm{Cl}$
$\mathrm{C}-\mathrm{O}$
$\mathrm{C}=\mathrm{C}$
$\mathrm{C}=\mathrm{O}$
$\mathrm{C} \equiv \mathrm{N}$
$\mathrm{C}-\mathrm{H}$
$\mathrm{O}-\mathrm{H}$ (carboxylic acid)
$\mathrm{O}-\mathrm{H}$ (alcohol / phenol)
$\mathrm{N}-\mathrm{H}$

Wavenumber/cm ${ }^{-1}$
500 to 600
650 to 800
1000 to 1300
1620 to 1670
1650 to 1750
2100 to 2250
2800 to 3100
2500 to 3200 (very broad)
3200 to 3550 (broad)
3300 to 3500
${ }^{13} \mathrm{C}$ NMR chemical shifts relative to TMS $=0$
Type of carbon Chemical shift, δ (ppm)

5 to 40

10 to 70

20 to 50

25 to 60

50 to 90

$\mathrm{R}-\mathrm{C} \equiv \mathrm{N}$
110 to 125

110 to 160

$\mathrm{R}-\underset{\substack{\mathrm{C} \\ \|}}{\substack{\text { O }}} \quad 190$ to 220
${ }^{1} \mathrm{H}$ NMR chemical shifts relative to TMS $=0$

Type of proton
$-\mathrm{CH}_{3}$
$\mathrm{R}-\mathrm{CH}_{3}$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$

$\mathrm{HC}-\mathrm{Cl}$ or $\mathrm{HC}-\mathrm{Br}$
$\mathrm{HC}-\mathrm{O}$
$\mathrm{R}-\mathrm{OH}$
$-\mathrm{C}=\mathrm{CH}$
$-\mathrm{C}=\mathrm{CH}-\mathrm{CO}$

Chemical shift, δ (ppm)
0.1 to 2.0
0.9
1.3
2.0
2.0 to 2.5
2.0 to 3.0
2.2 to 2.3
3.1 to 4.3
3.3 to 4.3
4.5 *
4.5 to 6.3
5.8 to 6.5
6.5 to 7.5
6.5 to 8.0
7.0 *
9.8 *
11.0 *

[^0]| | | ¢ | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| | 戸うの离高 | | | －${ }_{\text {－}}^{\text {O }}$ |
| | | | | |
| OOO | | | 읃․․ | |

55	56	
(223)	(226)	(227) Ac
87		
89		

d block
p block

[^0]: *variable figure dependent on concentration and solvent

