Surname
First name(s)

Centre Number

GCE A LEVEL
||| |||
Z22-A410U30-1
A410U30-1

THURSDAY, 23 JUNE 2022 - MORNING

CHEMISTRY - A level component 3

Chemistry in Practice

1 hour 15 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- Data Booklet supplied by WJEC.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	14	
2.	15	
3.	11	
4.	13	
5.	7	
Total	60	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The maximum mark for this paper is 60 .
Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.
The assessment of the quality of extended response (QER) will take place in Q.4(b)(i)

Answer all questions.

1. A student was given four sets of compounds as shown below. He was asked to carry out a
chemical test on each set of compounds that would allow him to distinguish between the compounds within each set.

For each set of compounds:

- Describe one chemical test the student could use. You may use the same reagents for more than one set.
- Give the relevant observations that would allow the student to distinguish between the compounds.
- Give an equation for one reaction that gives an observable change. State symbols are not required.

Set $\mathbf{1}$	
Solutions of	$\begin{array}{ll}\text { A } \\ \text { B } \\ \text { C }\end{array}$
Chemium nitrate	
aluminium nitrate	
magnesium nitrate	

Set 2		
Solutions of	D	phenol ethanol E
	F	
Chemical test		
Observations		
Equation		

2. The percentage purity of a sample of powdered magnesium hydroxide was determined by a back titration as follows.

Step	Method		
1	$\begin{array}{l}2.762 \mathrm{~g} \text { of a sample of powdered magnesium hydroxide was transferred into a } \\ 250 \mathrm{~cm}^{3} \text { beaker, and approximately } 200 \mathrm{~cm}^{3} \text { of } 0.460 \mathrm{~mol}^{-3} \mathrm{~m}^{-3} \text { hydrochloric acid } \\ \text { added. } \\ \text { The solution was warmed gently and stirred until the powder had all reacted. }\end{array}$		
2	$\begin{array}{l}\text { This solution was transferred quantitatively into a } 250 \mathrm{~cm}^{3} \text { volumetric flask and } \\ \text { made up to the mark with more of the same hydrochloric acid. The flask was } \\ \text { shaken well to ensure the solution was homogeneous. } \\ \text { The solution was labelled as solution } \mathbf{W} .\end{array}$		
3	$\begin{array}{l}\text { A burette was prepared by rinsing twice with an appropriate solution before filling } \\ \text { with 0.148 moldm }\end{array}$		
The initial burette reading was taken.		$\}$	$25.0 \mathrm{~cm}^{3}$ of solution \mathbf{W} was transferred into a conical flask and 3-4 drops of
:---			
phenolphthalein indicator added. The excess hydrochloric acid present was titrated			
with the sodium hydroxide until the solution turned a permanent pink colour.			
The volume of sodium hydroxide used was recorded.	$	$	The titration was repeated until concordant volumes of sodium hydroxide were
:---	:---		
obtained.			

(a) Give the equation for the reaction of magnesium hydroxide with hydrochloric acid (step 1).

(d) (i) Calculate the number of moles of excess hydrochloric acid in $250 \mathrm{~cm}^{3}$ of solution \mathbf{W}.
(ii) Calculate the number of moles of hydrochloric acid that reacted with the powdered magnesium hydroxide.
(iii) Calculate the percentage purity of the sample of powdered magnesium hydroxide.

Percentage purity $=$
(e) The actual percentage purity is 80.3%.

Suggest the name of a contaminant that would prevent this experimental analysis from giving an accurate percentage purity. Explain your answer.
\qquad
\qquad
3. The standard enthalpy change for the thermal decomposition of potassium hydrogencarbonate is represented by the following equation.

$$
2 \mathrm{KHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H_{1}
$$

It is not possible to measure the enthalpy change for this reaction directly. However, it is possible to measure accurately the enthalpy changes for the following two reactions in a school laboratory.

$$
\begin{aligned}
& \mathrm{KHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
\end{aligned}
$$

These enthalpy values can then be used to calculate ΔH_{1} using Hess's Law.

Part 1: Enthalpy change of reaction of potassium carbonate $\left(\Delta \mathrm{H}_{3}\right)$
In an experiment to determine ΔH_{3}, a student used $30.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{moldm}^{-3}$ hydrochloric acid and 2.29 g of powdered anhydrous potassium carbonate.
(a) Outline a method to determine the temperature change during the reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) If the student calculated the enthalpy change ΔH_{3} to be $-43.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the change in temperature. You can assume that the acid is in excess.

Part 2: Enthalpy change of reaction of potassium hydrogencarbonate $\left(\Delta \mathrm{H}_{2}\right)$
A similar experiment was used to determine ΔH_{2}, using $30.0 \mathrm{~cm}^{3}$ of hydrochloric acid (an excess) and 4.03 g of anhydrous potassium hydrogencarbonate.

The resulting temperature/time plot is given below.

(c) Determine the maximum temperature change by drawing appropriate lines to complete the graph.

$$
\Delta T=
$$

(d) Calculate the molar enthalpy change of reaction, $\Delta \mathrm{H}_{2}$.

Part 3: Enthalpy change of thermal decomposition of potassium hydrogencarbonate $\left(\Delta H_{1}\right)$
(e) The enthalpy of vaporisation of water, ΔH_{4}, is $40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \longrightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H_{4}
$$

Use the Hess's cycle shown below, and the values of $\Delta H_{2}, \Delta H_{3}$ and ΔH_{4}, to calculate the value of the standard enthalpy change of thermal decomposition of potassium hydrogencarbonate, ΔH_{1}.

(f) Suggest one reason why the enthalpy change for this reaction cannot be determined directly by calorimetry.
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

4. (a) The indicator thymol blue, which can be represented by the formula HInd, is a weak acid.

It dissociates in solution and has a $\mathrm{p} K_{\mathrm{a}}$ value of 8.9.

$\mathrm{H} \operatorname{Ind}(\mathrm{aq})$
yellow

In an acid-base titration sodium hydroxide is added from a burette using thymol blue as an indicator. State the colour change that will occur, giving a reason for your answer. [2]

Draw the titration curve obtained when $50.0 \mathrm{~cm}^{3}$ of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a strong base is added gradually to $25.0 \mathrm{~cm}^{3}$ of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak acid.

The weak acid has a K_{a} value of $1.80 \times 10^{-5} \mathrm{moldm}^{-3}$ at 298 K .
Give the pH values at key points during the titration and explain their significance. [6 QER]

	(ii)	From the table below, suggest an appropriate indicator to use in this weak acid/strong base titration. Explain your answer.													[1]
pH	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\begin{gathered} \text { Indicator } \\ \text { A } \end{gathered}$					red		yellow								
Indicator B							yellow		blu						
Indicator C									colo		red				

dicator A

Indicator B

C
(c) An aqueous buffer was made by mixing $250 \mathrm{~cm}^{3}$ of $0.262 \mathrm{moldm}^{-3}$ sodium propanoate and $500 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid at 298 K .

$$
\left(K_{\mathrm{a}} \text { for propanoic acid }=1.34 \times 10^{-5} \mathrm{moldm}^{-3} \text { at } 298 \mathrm{~K}\right)
$$

(i) State the function of the sodium propanoate in the buffer solution.
\qquad
\qquad
(ii) Calculate the pH of the buffer solution at 298 K .
5. Malonic acid was first obtained in 1858 by the oxidation of malic acid, which is found in unripe apples.

(a) Give the systematic name of malonic acid.
(b) Both malonic acid and compound \mathbf{X} have the same molecular formula. Some of the properties of compound \mathbf{X} are given below.

- Compound \mathbf{X} does not show optical or geometric isomerism.
- The simplified ${ }^{1} \mathrm{H}$ NMR spectrum of compound \mathbf{X} shows three separate peaks in the area ratio 1:1:2.
- A solution, containing 0.704 g of compound \mathbf{X}, on reaction with excess sodium carbonate, gives $83.0 \mathrm{~cm}^{3}$ of a colourless gas at $25^{\circ} \mathrm{C}$ and 1 atm pressure.
- Compound \mathbf{X} does not react with 2,4-DNPH.
- Compound \mathbf{X} decolourises aqueous bromine to form compound \mathbf{Y} which has a chiral carbon.

Use all the information to identify and give the structures of compound \mathbf{X} and compound \mathbf{Y}. Show the chiral carbon in compound \mathbf{Y}.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.

$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Question } \\ \text { number } \end{array} \end{array}$	Additional page, if required. Write the question number(s) in the left-hand margin.	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

 Z22-A410U30-1A

THURSDAY, 23 JUNE 2022 - MORNING

CHEMISTRY - A level component 3

Data Booklet

Avogadro constant
molar gas constant
molar gas volume at 273 K and 1 atm
molar gas volume at 298 K and 1 atm
Planck constant
speed of light
density of water
specific heat capacity of water
ionic product of water at 298 K
fundamental electronic charge

$$
\begin{aligned}
& N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \\
& V_{m}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\
& V_{m}=24.5 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \\
& h=6.63 \times 10^{-34} \mathrm{Js} \\
& c=3.00 \times 10^{8} \mathrm{~ms}^{-1} \\
& d=1.00 \mathrm{~g} \mathrm{~cm}^{-3} \\
& c=4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1} \\
& K_{w}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \\
& e=1.60 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

temperature $(\mathrm{K})=$ temperature $\left({ }^{\circ} \mathrm{C}\right)+273$
$1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}$
1 tonne $=1000 \mathrm{~kg}$
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$

Multiple	Prefix	Symbol
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

Infrared absorption values

Bond

$\mathrm{C}-\mathrm{Br}$	500 to 600
$\mathrm{C}-\mathrm{Cl}$	650 to 800
$\mathrm{C}-\mathrm{O}$	1000 to 1300
$\mathrm{C}=\mathrm{C}$	1620 to 1670
$\mathrm{C}=\mathrm{O}$	1650 to 1750
$\mathrm{C} \equiv \mathrm{N}$	2100 to 2250
$\mathrm{C}-\mathrm{H}$	2800 to 3100
$\mathrm{O}-\mathrm{H}$ (carboxylic acid)	2500 to 3200 (very broad)
O—H (alcohol / phenol)	3200 to 3550 (broad)
N—H	3300 to 3500

${ }^{13} \mathrm{C}$ NMR chemical shifts relative to $\mathrm{TMS}=0$
Type of carbon

5 to 40
10 to 70
20 to 50
25 to 60
50 to 90
90 to 150
110 to 125
110 to 160
160 to 185
R — C - (aldehyde / ketone) 190 to 220

Chemical shift, δ (ppm)
${ }^{1} \mathrm{H}$ NMR chemical shifts relative to TMS $=0$
Type of proton

$-\mathrm{CH}_{3}$	0.1 to 2.0
$\mathrm{R}-\mathrm{CH}_{3}$	0.9
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$	1.3
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$	2.0
	2.0 to 2.5
	2.0 to 3.0
	2.2 to 2.3
$\mathrm{HC}-\mathrm{Cl}$ or $\mathrm{HC}-\mathrm{Br}$	3.1 to 4.3
HC-O	3.3 to 4.3
$\mathrm{R}-\mathrm{OH}$	4.5 *
$-\mathrm{C}=\mathrm{CH}$	4.5 to 6.3
$-\mathrm{C}=\mathrm{CH}-\mathrm{CO}$	5.8 to 6.5
	6.5 to 7.5
	6.5 to 8.0
	7.0 *
	9.8 *
	11.0 *

[^0]| |
| :---: |

[^0]: *variable figure dependent on concentration and solvent

