Surname
First name(s)

Centre Number	
	Candidate Number
2	

GCE A LEVEL

A420U20-1
||
Z22-A420U20-1

FRIDAY, 10 JUNE 2022 - AFTERNOON

PHYSICS - A level component 2

Electricity and the Universe

2 hours

ADDITIONAL MATERIALS

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	10	
2.	11	
3.	13	
4.	19	
5.	15	
6.	10	
7.	10	
8.	12	
Total	100	

In addition to this examination paper, you will require a calculator and a Data Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The assessment of the quality of extended response (QER) will take place in question 2(a).

(i) Determine the value of I and indicate its direction with an arrow on the diagram.
(ii) Calculate the number of electrons passing point \mathbf{Q} in one second.
\qquad
\qquad
(b) Charlotte is investigating circuits involving combinations of buzzers. In the circuit below, buzzers $\mathbf{P}, \mathbf{Q}, \mathbf{S}$ and \mathbf{T} can be controlled using switches \mathbf{X} and \mathbf{Y}. The buzzers are identical and their resistances remain constant.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2. (a) The diagram shows the $I-V$ characteristic for the filament of a lamp. Describe and explain in detail the shape of the graph referring to the motion of free electrons. [6 QER]

(b) Megan uses the following circuit to determine the emf and internal resistance, r, of a cell. By adjusting the variable resistor, R, a series of current and pd readings are taken and plotted as shown.

3. (a) A physics student wishes to construct a capacitor which will store 31 nC of charge when connected to an 8.0 V power supply. He carries out some calculations and determines that placing two square aluminium plates of side length 21 cm a distance of 0.10 mm from each other (as shown) would be suitable. The diagram is not to scale.

(i) Determine whether or not this capacitor set-up will store the required charge.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) State how the student could increase the charge stored without changing any of the dimensions of the capacitor, or the power supply to it.
(b) The diagram shows a combination of capacitors, C_{1}, C_{2} and C_{3} connected to a 6.0 V power supply.

Determine the charges on each of the capacitors and the potential differences across them.
(c) Two identical capacitors, A and B , are charged to a pd V. Capacitor A is connected to a resistor of value R and capacitor B is connected to a resistor of value $\frac{R}{2}$.
The time taken for the charge on capacitor A to decrease from 16 nC to 8 nC is given by t. The time taken for the charge on capacitor B to decrease from 16 nC to 2 nC is given by T.

Show that $T=\frac{3 t}{2}$.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

4. (a) In the production of steel alloy, atoms of carbon are added to iron. The resulting alloy is less ductile than pure iron. State the meaning of the term ductile, and describe, on an atomic scale, why the addition of carbon atoms can make steel less ductile than iron.
(b) Two wires, one of copper and one of steel, each of the same length $\frac{l}{2}$, and each with the same cross-sectional area, A, are attached end to end and suspended from a rigid support. A force, F, is applied as shown.

(i) The strain energy, W, in the wire combination due to the stretching force, F, can be given by $\frac{1}{2} F \Delta x$, where Δx represents the total extension in the wire combination. Show that:

$$
W=\frac{F^{2} l}{4 A}\left(\frac{1}{E_{\text {copper }}}+\frac{1}{E_{\text {steel }}}\right)
$$

(ii) Calculate W when $F=45.0 \mathrm{~N}$, given that $A=0.6 \times 10^{-6} \mathrm{~m}^{2}$ and $l=3.8 \mathrm{~m},\left[E_{\text {copper }}=120 \mathrm{GPa}\right.$ and $\left.E_{\text {steel }}=180 \mathrm{GPa}\right]$.
(iii) A student measures the total extension of the combination to be approximately 2 mm when $F=45.0 \mathrm{~N}$. Determine whether or not her measurement is consistent with your answer to (b)(ii).
(c) (i) Jasmine wishes to determine the Young modulus of a metal in the form of a wire. She makes the following measurements, along with uncertainties.

$$
\begin{aligned}
& \text { Diameter }=0.32 \pm 0.01 \mathrm{~mm} \\
& \text { Initial length }=2.825 \pm 0.005 \mathrm{~m} \\
& \text { Tension }=7.8 \pm 0.1 \mathrm{~N} \\
& \text { Extension }=1.8 \mathrm{~mm} \pm 0.2 \mathrm{~mm}
\end{aligned}
$$

Determine the Young modulus of the metal, along with the absolute uncertainty in its value. Give your answer to an appropriate number of significant figures.
(ii) Jasmine repeats her experiment by using a wire made of the same metal and original length, but with a larger diameter. Without further calculation, discuss how this change might affect the uncertainty in her result for the Young modulus.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. (a) Define electric potential, V_{E}, at a point in an electric field.
(b) The graph shows the variation of electric potential with distance, r, from an isolated positive point charge, Q.

(i) Use the graph to calculate the charge Q.
\qquad
\qquad

Examiner
(i) The magnitude and direction of the force due to the electric field on a proton is given by:

$$
F_{E}=E q \text { directed downwards }
$$

Write down an expression for the magnitude and direction of the force, F_{B}, due to the magnetic field on a proton.
(ii) Protons travel through the region of the combined fields in a straight line when $F_{E}=F_{B}$. Show that, under these conditions, the speed, v, of the protons can be given by:

$$
v=\frac{V}{B d}
$$

(iii) With $B=3.2 \mathrm{mT}$ and $d=20 \mathrm{~mm}$, determine the value of V, which would 'select' (allow) those protons with a speed of $6.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ to travel through the fields undeflected.
(iv) Describe and explain the motion of a proton travelling at less than $6.0 \times 10^{6} \mathrm{~ms}^{-1}$ through these fields.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

6. (a) The black body spectrum for a star is shown. Describe how it can be used to determine the temperature of the surface of the star.

(b) A website gives the following information about another star.

Radius of star/m	Black body temperature $/ \mathrm{K}$	Intensity of radiation from the star at Earth's surface $/ \mathrm{Wm}^{-2}$
4.9×10^{10}	12100	5.2×10^{-7}

(i) Use this information to calculate the distance of the star from the Earth.
\qquad
\qquad
\qquad
(ii) The star is observed to be blue. Explain how the data supports this observation.

Examiner
(c) In early 2020 the red supergiant star, Betelgeuse, underwent a period of rapid and unexpected dimming. Initially, one group of astronomers postulated that the dimming was due to the ejection of a large amount of gas from the surface, which in turn cooled to form a dust cloud, partially blocking the star's light as seen from the Earth (illustrated in Image A).

Later, a different group of astronomers suggested that the dimming was in fact due to temperature variations in the photosphere, the luminous surface of the star. High resolution images indicated huge star spots of lower temperature covering between 50% and 70% of the visible surface (illustrated in Image B). According to this study, their result isn't compatible with the presence of dust.

Image A

Image B

Suggest how the scientific community should proceed to evaluate these claims.
\qquad
\qquad
\qquad
\qquad
7. (a) (i) Stating an assumption, show that the age of the universe can be given by $\frac{1}{H_{0}}$ where H_{0} is the Hubble constant.
(ii) Quasars are extremely bright objects in the night sky. 3C48 is a quasar discovered in 1960 which is 4.60×10^{9} light years from Earth and has a red shift, $\frac{\Delta \lambda}{\lambda}=0.36$. Use this information to estimate the age of the universe. [4] (1 light year $=9.46 \times 10^{15} \mathrm{~m}$.
(b) (i) Astronomers studying a spiral galaxy estimate from their observations that its mass is $4 \times 10^{40} \mathrm{~kg}$. Calculate the theoretical orbital speed of dust particles orbiting at a distance of $1.2 \times 10^{21} \mathrm{~m}$ from the centre of the galaxy.

(ii) The measured velocity of the dust particles is found to be greater than the theoretical value calculated in (b)(i). Explain how astronomers account for this discrepancy.
\qquad
\qquad
\qquad

TURN OVER FOR THE LAST QUESTION.

8. (a) The gravitational field strength on the surface of the Moon is $1.62 \mathrm{~N} \mathrm{~kg}^{-1}$, and its
radius is $1.74 \times 10^{6} \mathrm{~m}$. Use this information to show that the mass of the Moon is
9. (a) The gravitational field strength on the surface of the Moon is $1.62 \mathrm{Nkg}^{-1}$, and its
radius is $1.74 \times 10^{6} \mathrm{~m}$. Use this information to show that the mass of the Moon is approximately $7 \times 10^{22} \mathrm{~kg}$.
(b) An object's escape velocity is the speed at which it needs to travel away from a body such as a planet or moon for it to break free from the gravitational pull of that body.
(i) Use the principle of conservation of energy to derive an expression for the escape velocity, v, of a small body of mass, m, from a sphere of mass M and radius r. [2]
(ii) Hence, calculate the escape velocity from the Moon.
\qquad
\qquad
\qquad
(c) (i) The Moon's surface can reach a temperature as high as 400 K in direct sunlight. Show that the rms speed of oxygen molecules at this temperature is greater than $500 \mathrm{~ms}^{-1}$. (The relative molecular mass of oxygen is 32 .)
(ii) The sketch graph below shows the speed distribution of oxygen molecules at 400 K . Referring to the graph, suggest why the Moon does not have an atmosphere.

|| |||
Z22-A420U20-1A

FRIDAY, 10 JUNE 2022 - AFTERNOON

PHYSICS - A level component 2

Data Booklet

A clean copy of this booklet should be issued to candidates for their use during each A level component 2 Physics examination.

Centres are asked to issue this booklet to candidates at the start of the course to enable them to become familiar with its contents and layout.

Values and Conversions

Avogadro constant
Fundamental electronic charge
Mass of an electron
Molar gas constant
Acceleration due to gravity at sea level
Gravitational field strength at sea level
Universal constant of gravitation
Planck constant
Boltzmann constant
Speed of light in vacuo
Permittivity of free space
Permeability of free space
Stefan constant
Wien constant
Hubble constant

$$
\begin{aligned}
N_{A} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
m_{e} & =9.11 \times 10^{-31} \mathrm{~kg} \\
R & =8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
g & =9.81 \mathrm{Nkg}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\
h & =6.63 \times 10^{-34} \mathrm{Js}^{2} \\
k & =1.38 \times 10^{-23} \mathrm{JK}^{-1} \\
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{Hm}^{-1} \\
\sigma & =5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \\
W & =2.90 \times 10^{-3} \mathrm{mK}^{2} \\
H_{0} & =2.20 \times 10^{-18} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& T / \mathrm{K}=\theta /{ }^{\circ} \mathrm{C}+273.15 \\
& 1 \text { parsec }=3.09 \times 10^{16} \mathrm{~m} \\
& 1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J} \\
& \frac{1}{4 \pi \varepsilon_{0}} \approx 9.0 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}
\end{aligned}
$$

$\rho=\frac{m}{V}$	$T=2 \pi \sqrt{\frac{l}{g}}$
$v=u+a t$	$p V=n R T$ and $p V=N k T$
$x=\frac{1}{2}(u+v) t$	$p=\frac{1}{3} \rho c^{2}=\frac{1}{3} \frac{N}{V} m c^{2}$
$x=u t+\frac{1}{2} a t^{2}$	$M / \mathrm{kg}=\frac{M_{r}}{1000}$
$v^{2}=u^{2}+2 a x$	$n=\frac{\text { total mass }}{\text { molar mass }}$
$\Sigma F=m a$	$k=\frac{R}{N_{A}}$
$p=m v$	$U=\frac{3}{2} n R T=\frac{3}{2} N k T$
$W=F x \cos \theta$	$W=p \Delta V$
$\Delta E=m g \Delta h$	$\Delta U=Q-W$
$E=\frac{1}{2} k x^{2}$	$Q=m c \Delta \theta$
$E=\frac{1}{2} m v^{2}$	$I=\frac{\Delta Q}{\Delta t}$
$F x=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$	$I=n A v e$
$P=\frac{W}{t}=\frac{\Delta E}{t}$	$R=\frac{V}{I}$
$\text { efficiency }=\frac{\text { useful energy transfer }}{\text { total energy input }} \times 100 \%$	$P=I V=I^{2} R=\frac{V^{2}}{R}$
$\omega=\frac{\theta}{t}$	$R=\frac{\rho l}{A}$
$v=\omega r$	$V=E-I r$
$a=\omega^{2} r$	$\frac{V}{V_{\text {total }}}\left[\text { or } \frac{V_{\text {our }}}{V_{\text {IN }}}\right]=\frac{R}{R_{\text {total }}}$
$a=\frac{v^{2}}{r}$	$C=\frac{Q}{V}$
$F=\frac{m v^{2}}{r}$	$C=\frac{\varepsilon_{0} A}{d}$
$F=m \omega^{2} r$	$E=\frac{V}{d}$
$a=-\omega^{2} x$	$U=\frac{1}{2} Q V$
$x=A \cos (\omega t+\varepsilon)$	$Q=Q_{0}\left(1-e^{-\frac{t}{R C}}\right)$
$T=\frac{2 \pi}{\omega}$	$Q=Q_{0} e^{-\frac{t}{R C}}$
$v=-A \omega \sin (\omega t+\varepsilon)$	$F=k x$
$T=2 \pi \sqrt{\frac{m}{k}}$	$\sigma=\frac{F}{A}$

$\varepsilon=\frac{\Delta l}{l}$	$n=\frac{c}{v}$				
$E=\frac{\sigma}{\varepsilon}$	$n_{1} v_{1}=n_{2} v_{2}$				
$W=\frac{1}{2} F x$	$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$				
$F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}}$	$n_{1} \sin \theta_{\mathrm{C}}=n_{2}$				
$F=G \frac{M_{1} M_{2}}{r^{2}}$	$E_{\mathrm{k} \text { max }}=h f-\phi$				
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$	$p=\frac{h}{\lambda}$				
$g=\frac{G M}{r^{2}}$	$A=\lambda N$				
$V_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$	$N=N_{0} e^{-\lambda t}$				
$\mathrm{PE}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r}$	$A=A_{0} e^{-\lambda t}$				
$V_{g}=-\frac{G M}{r}$	$N=\frac{N_{0}}{2^{x}}$				
$\mathrm{PE}=-\frac{G M_{1} M_{2}}{r}$	$A=\frac{A_{0}}{2^{x}}$				
$W=q \Delta V_{E}$	$\lambda=\frac{\ln 2}{T_{1}}$				
$W=m \Delta V_{g}$	leptons			quarks	
$\lambda_{\text {max }}=\frac{W}{T}$	particle (symbol)	electron (e^{-})	electron neutrino (v_{e})	$\mathrm{up}_{(\mathrm{u})}$	down (d)
$P=A \sigma T^{4}$					
$\frac{\Delta \lambda}{\lambda}=\underline{v}$	charge (e)	- 1	0	$+\frac{2}{3}$	- $\frac{1}{3}$
$v=H_{0} D$	lepton number	1	1	0	0
$\rho_{c}=\frac{3 H_{0}{ }^{2}}{8 \pi G}$	$E=m c^{2}$				
$r_{1}=\frac{M_{2}}{M_{1}+M_{2}} d$	$F=B I l \sin \theta$				
$T=2 \pi \sqrt{\frac{d^{3}}{G\left(M_{1}+M_{2}\right)}}$	$F=B q v \sin \theta$				
$T=\frac{1}{f}$	$B=\frac{\mu_{0} I}{2 \pi a}$				
$c=f \lambda$	$B=\mu_{0} n I$				
$\lambda=\frac{a \Delta y}{D}$	$\Phi=A B \cos \theta$				
$d \sin \theta=n \lambda$	flux linkage $=N \Phi$				

Mathematical Information

SI multipliers

Multiple	Prefix	Symbol
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zetta	Z

Areas and Volumes

Area of a circle $=\pi r^{2}=\frac{\pi d^{2}}{4} \quad$ Area of a triangle $=\frac{1}{2}$ base \times height

Solid	Surface area	Volume
rectangular block	$2(l h+h b+l b)$	$l b h$
cylinder	$2 \pi r(r+h)$	$\pi r^{2} h$
sphere	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$

Trigonometry

$$
\sin \theta=\frac{\mathrm{PQ}}{\mathrm{PR}}, \quad \cos \theta=\frac{\mathrm{QR}}{\mathrm{PR}}, \quad \tan \theta=\frac{\mathrm{PQ}}{\mathrm{QR}}, \quad \frac{\sin \theta}{\cos \theta}=\tan \theta
$$

$$
P R^{2}=P Q^{2}+\mathrm{QR}^{2}
$$

Logarithms

[Unless otherwise specified ' ${ }^{\prime}$ 'g' can be $\log _{\mathrm{e}}$ (i.e. \ln) or $\log _{10}$.]

$$
\begin{array}{ll}
\log (a b)=\log a+\log b & \log \left(\frac{a}{b}\right)=\log a-\log b \\
\log x^{n}=n \log x & \log _{\mathrm{e}} e^{k x}=\ln e^{k x}=k x
\end{array}
$$

$\log _{\mathrm{e}} 2=\ln 2=0.693$

